Chứng minh :
2/3×5+2/5×7+2/7×9+...+2/97×99>32%
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
78+79+710 chia hết cho 57
Ta có : 78+79+710 = 78.(1+7+72) = 78.57 chia hết cho 57
6410-3211-1613 chia hết cho 19
6410- 3211- 1613 = 260- 255- 252
=252.28-252.23-252
=252(28-23-1)
=252.247=252.19.13 chia hết cho 19
2+23+25+...+297+299 chia hết cho 5,10
= (2+2^3)+(2^5+2^7) +...+(2^97+2^99)
= 2(1+4) + 2^5(1+4) + ... + 2^97(1+4)
= 2x5 + 2^5 x 5 + ... + 2^97
= 5(2+2^5+..+2^97) chia hết cho 5
Ta có:
\(C= 4+44+444+......+4444444444\)
\(C= 4.(10.1+9.10+8.100+7.1000+...+1.1000000000\)
\(C= 4.(100+90+800+7000+60000+500000+4000000+30000000+200000000+1000000000)\)
\(C=4.12345678900\)
\(C=4938271600\)
Tương tự.
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
=1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99
=1/3-1/99
=32/99
**** mình nha
\(D=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(\Rightarrow D=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(\Rightarrow D=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
P/S : dấu . là dấu nhân nha
\(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+.....+\frac{2}{97\times99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Chúc bạn học tốt
M=2/3.5+2/5.7+...+2/97.99
M=1.(1/3-1/5+...+1/97-1/99)
M=1.(1/3-1/99)
M=32/99
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
Ta có: \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+....+\frac{2}{97\times99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Mà \(32\%=\frac{32}{100}\)
Vì 99 < 100 (cùng tử) \(\Rightarrow\frac{32}{99}>\frac{32}{100}\)
Vậy \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{1}{7\times9}+...+\frac{2}{97\times99}>32\%\) (ĐPCM)
Ta có: \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
\(\Rightarrow32\%=\frac{32}{100}\)
* Dựa vào cách so sánh phân số của lớp 4 (Phân số có tử bằng nhau ta đi so sánh mẫu số, phân số nào có mẫu số bé hơn thì phân số đó lớn hơn - phân số nào có mẫu số lớn hơn thì phân số đó bé hơn)
\(\Rightarrow\frac{32}{99}>\frac{32}{100}\)
Vậy \(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{97\times99}>32\%\left(đpcm\right)\)