Biết sin480\(\approx\)0,7431.Tính sin420
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì công thức chu vi đường tròn là \(2\pi R\) với R là độ dài bán kính, trong đó \(\pi \) là số không thể tính chính xác được mà chỉ có thể lấy số gần đúng nên hai giá trị tính được là số gần đúng.
b)
Kết quả của An: \({S_1} = 2\pi R \approx 2.3,14.2 = 12,56\) cm:
Kết quả của Bình: \({S_2} = 2\pi R \approx 2.3,1.2 = 12,4\)cm.
Ta thấy \(\pi > 3,14 > 3,1 => 2.\pi. R > {S_1} > {S_2}\)
\( = > \left| {2\pi R - {S_1}} \right| < \left| {2\pi R - {S_2}} \right|\)
Nói cách khác, sai số tuyệt đối của \(S_1\) nhỏ hơn \(S_2\).
=> Kết quả của An chính xác hơn.
Áp dụng t/c tổng 3 góc trong 1 tam giác
=> \(\widehat{C}=180-60-36=84\)
Áp dụng định lí sin:
\(\dfrac{AB}{sin84}=\dfrac{BC}{sin60}=\dfrac{AC}{sin36}\)
\(\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{sin60.AB}{sin84}\\AC=\dfrac{sin36.AB}{sin84}\end{matrix}\right.\)
\(AC+BC=\dfrac{AB\left(sin60+sin36\right)}{sin84}=\dfrac{2\left(sin60+sin36\right)}{sin84}\simeq2,9\)
Độ dài đường chéo là:
\(\sqrt{72^2+120^2}=24\sqrt{34}\left(cm\right)\simeq55,1\left(inch\right)\)
\(\sqrt {10} + 10\sqrt 2 \approx 3 + 15 = 18\) chênh lệch nhiều so với \( 27,304\)
Vậy bạn học sinh đã tính sai.
a) Thay t=1 ta được:
\(S = \frac{1}{2}.9,{8.1^2} = 4,8\left( m \right)\)
Thay t=2 vào ta được: \(S = \frac{1}{2}.9,{8.2^2} = 19,6\left( m \right)\)
b) Với mỗi giá trị của t có 1 giá trị tương ứng của S.