Tìm n:
a) \(10^{2n}\) +\(9^{2n+1}\) + \(2018^0\)
b) \(6^{2n+1}.5^{5^5}+1^{2018^{2018}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : n-2017\(⋮\)n-2018
\(\Rightarrow\)n-2018+1\(⋮\)n-2018
Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018
\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)
+) n-2018=-1
n=2017 (thỏa mãn)
+) n-2018=1
n=2019 (thỏa mãn)
Vậy n\(\in\){2017;2019}
c) Ta có : 2n-3\(⋮\)2n-5
\(\Rightarrow\)2n-5+2\(⋮\)2n-5
Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5
\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2 (thỏa mãn)
+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3 (thỏa mãn)
+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5 (không thỏa mãn)
+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5 (không thỏa mãn)
Vậy n\(\in\){2;3}
\(A=\left(n^2+2n+1+4\right)^3-\left(n+1\right)^2+2018\)
\(A=\left(\left(n+1\right)^2+4\right)^3-\left(n+1\right)^2+2018\)
ĐẶT: \(\left(n+1\right)^2=a\)
=> \(A=\left(a+4\right)^3-a+2018\)
=> \(A=a^3+12a^2+48a+64-a+2018\)
=> \(A=\left(a^3-a\right)+12a^2+48a+2082\)
CÓ:
\(a^3-a=a\left(a-1\right)\left(a+1\right)\) hiển nhiên chia hết cho 3 và 2 do đây là tích 3 số nguyên liên tiếp
=> \(a^3-a⋮6\)
MÀ HIỂN NHIÊN: \(12a^2+48a+2082⋮6\)
=> \(A⋮6\)
VẬY TA CÓ ĐPCM.
mày chửi nhiều wa nên ko ai tra loi! Hihihi