K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Hỏi đáp ToánHỏi đáp Toán

19 tháng 7 2018

a) Gọi K là giao điểm của EI và DM

Xét \(\Delta EKD\)và \(\Delta EKM\)có :

\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )

\(EI\): Cạnh chung

\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)

Do đó : Tam giác vuông EKM = Tam giác vuông EKM 

\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )

b) 

Xét \(\Delta EDI\)và \(\Delta EMI\)có :

\(ED=EM\)( câu a )

\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )

\(EI:\)Cạnh chung

Do đó : Tam giác EMI = tam giác EDI (c.g.c )

\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )

Mà \(\widehat{EDI}=90^o\)

\(\Rightarrow\widehat{EMI}=90^o\)

\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)

c) 

Vì \(\widehat{EMI}=90^o\)( câu b )

\(\Rightarrow\widehat{IMF}=90^o\)

Xét tam giác IMF   ta có :

\(\widehat{IMF}=90\)

=> IF là cạnh lớn nhất   ( cạnh đối diện với góc vuông )

\(\Rightarrow IF>IM\)

Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )

\(\Rightarrow IF>ID\)

c ) Áp dụng t/c đường đồng quy .

a: Xét ΔEDK có 

EM là đường cao

EM là đường phân giác

Do đó: ΔEDK cân tại E

b: Xét ΔEDM và ΔEKM có

ED=EK

\(\widehat{DEM}=\widehat{KEM}\)

EM chung

DO đó: ΔEDM=ΔEKM

Suy ra: DM=DK

mà ED=EK

nên EM là đường trung trực của DK

18 tháng 3 2021

???????????????????????????????????????????????????

18 tháng 3 2021

bạn vẽ hình ra đi

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

a: Xét ΔDEF có DI là phân giác

nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)

=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)

=>EI=8(cm)

b: Ta có: EI+IF=EF

=>EF=6+8=14(cm)

Xét ΔEDF có MI//DF

nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)

=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)

=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)

MD+ME=DE

=>MD+30/7=10

=>MD=40/7(cm)

c: Xét ΔDEF có DI là phân giác

nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)

Xét ΔEDF có MI//DF

nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)

24 tháng 7

ED=EF(tôi cần lý do để bằng nhau)

 

a: Xet ΔDEN và ΔFEN có

ED=EF
góc DEN=góc FEN

EN chung

=>ΔDEN=ΔFEN

=>ND=NF

=>ΔNDF cân tại N

b: ΔDEN=ΔNFE

=>góc NFE=90 độ

=>NF vuông góc EF

c: Xét ΔDEP có

DF là trung tuyến

DF=EP/2

=>ΔDEP vuông tại D