Chứng minh rằng :S=1/1.2+1/2.3+...+1/n.(n+1)
ko phải số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{1}{1.2}>0;\frac{1}{2.3}>0;...;\frac{1}{n.\left(n+1\right)}>0\)
\(\Rightarrow S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}>0\)
ta có: \(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(S=1-\frac{1}{n+1}< 1\)
=> 0 < S < 1
=> S không phải là số tự nhiên
\(Q=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\) < 1 (1)
Vì n thuộc N* => n + 1 > 1 => \(1-\frac{1}{n+1}>1-1=0\) (2)
Từ (1) và (2) => 0 < Q < 1
=>Q ko phải số nguyên
Cho S=1.2+2.3+3.4+...+n.(n+1) với n thuộc N*. Chứng minh rằng 3S+ n.(n+1).(n2-2) là số chính phương.
Lời giải:
$3S=1.2(3-0)+2.3.(4-1)+3.4(5-2)+...+n(n+1)[(n+2)-(n-1)]$
$=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]$
$=n(n+1)(n+2)$
$\Rightarrow 3S+n(n+1)(n^2-2)=n(n+1)(n+2)+n(n+1)(n^2-2)$
$=n(n+1)(n+2+n^2-2)=n(n+1)(n^2+n)=n(n+1)n(n+1)=[n(n+1)]^2$ là số chính phương.
A=1-1/2+1/2-1/3+...+1/n-1/n+1
=1-1/n+1
=n/n+1 không là số nguyên
Đk: n khác 0, n khác -1
\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{n\left(n+1\right)}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(=1-\dfrac{1}{n+1}\)
Vì \(0< \dfrac{1}{n+1}< 1\) (n khác 0, n khác -1) nên \(0< 1-\dfrac{1}{n+1}< 1\)
hay 0<S<1
Vậy S không là stn