Giải phương trình vô tỷ sau
\(x^2\) - x +12\(\sqrt{1-x}\) = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{12-\frac{12}{x^2}}+\sqrt{x^2-\frac{12}{x^2}}=x^2\)
\(pt\Leftrightarrow\sqrt{12-\frac{12}{x^2}}-3+\sqrt{x^2-\frac{12}{x^2}}-1=x^2-4\)
\(\Leftrightarrow\frac{12-\frac{12}{x^2}-9}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{x^2-\frac{12}{x^2}-1}{\sqrt{x^2-\frac{12}{x^2}}+1}=x^2-4\)
\(\Leftrightarrow\frac{\frac{3x^2-12}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^4-x^2-12}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x^2-4\right)=0\)
\(\Leftrightarrow\frac{\frac{3\left(x-2\right)\left(x+2\right)}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{\left(x-2\right)\left(x+2\right)\left(x^2+3\right)}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^2+3}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-1\right)=0\)
SUy ra x=±2
\(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)+\(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)=12
Đặt \(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)=a (a>0)
=> \(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)= \(a^2\)
Chị QA 114 đấy
ĐKXĐ: ...
\(\sqrt{x^2-x-30}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)
\(\Leftrightarrow\sqrt{\left(x+5\right)\left(x-6\right)}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)(*)
đặt \(\sqrt{x+5}=a\ge0;\sqrt{x-6}=b\ge0\)
\(\text{pt(*)}\Leftrightarrow ab-3a-2b=-6\\ \Leftrightarrow\Leftrightarrow ab-3a-2b+6=0\\ \Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\\ \Leftrightarrow\left(a-2\right)\left(b-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=2\\\sqrt{x-6}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+5=4\\x-6=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=15\left(tm\right)\end{matrix}\right.\)
cái nằm dưới căn pt đc (7x-4)(x^2-x+3) , (7x-4)+(x^2-x+3)=x^2+6x-1 ,đặt ẩn phụ mà triển
x^2 +x + 12√(x+1) =36
<=> x(x+1) + 12√(x+1) =36 (1)
dặt √(x+1) =t =>
{ x+1 =t^2
{ x=t^2 -1
(1) <=> (t^2 -1)(t^2 ) +12t =36
<=> t^4 -t^2 +12t-36 =0
<=> t^4 -(t-6)^2 =0
<=> (t^2 -t+6)(t^2 +t-6) =0
<=>
[ t^2 -t +6 =0 <=> (t-1/2)^2 + 23/4 =0 (vô lý do (t-1/2)^2 ≥ 0 ,23/4 >0 )
[t^2 +t-6 =0 <=> (t+1/2)^2 =25/4 (2)
(2) <=>
[ t+1/2 =5/2 => t =2 => √(x+1) =2 => x=3
[t+1/2 =-5/2 => t=-3 =>√(x+1) =-3 (vô lý do √(x+1) ≥ 0
vậy pt có nghiệm x=3
bạn ơi nhưng đề bài là 12\(\sqrt{x-1}\) mà