Tìm x,y \(\varepsilon\) N biết (giải bằng 4 cách)
a) (9x-2)(2y+1)=17
b)xy+x+2y=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x-2)(2y+1)=17
Ta có:17=1.17=17.1
Trường hợp 1:(x-2)(2y+1)=17.1
\(\Leftrightarrow\orbr{\begin{cases}x-2=17\\2y+1=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=19\\y=0\end{cases}}\) (nhận)
Trường hợp 2:(x-2)(2y+1)=1.17
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2y+1=17\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=8\end{cases}}\) (nhận)
V65y có 2 cặp x,y thoả mãn:x=19 và y=0;x-3 và y=8
\(\left(x-2\right)\left(2y+1\right)=17\)
\(17=1\cdot17=-1\cdot-17\)
Xét : \(\orbr{\begin{cases}x-2=1\\2y+1=17\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\y=9\end{cases}}\)
Tương tự các TH khác bạn vẽ bảng ra rồi tính
b) \(xy+x+2y=5\)
\(\Leftrightarrow\left(xy+y\right)+2y+2=7\)
\(\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=7\)
\(\Leftrightarrow\left(x+2\right)\left(y+1\right)=7\)
\(7=-1\cdot-7=1\cdot7\)
a: (x-2)(2y+1)=17
\(\Leftrightarrow\left(x-2;2y+1\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(3;8\right);\left(19;0\right);\left(1;-9\right);\left(-15;-1\right)\right\}\)
b: \(\Leftrightarrow xy+x+2y+2=7\)
\(\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=7\)
\(\Leftrightarrow\left(x+2\right)\left(y+1\right)=7\)
\(\Leftrightarrow\left(x+2;y+1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-1;-8\right);\left(-9;-2\right)\right\}\)
a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)
\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)
\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)
b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)
\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)
\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)
\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)
\(\Leftrightarrow\frac{1}{3x^2-y^2}\)
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
1. Đặt A = 3x + 1
=> 2A = 6x + 2 = 3(2x - 1) + 5
Để A \(⋮\)2x - 1 <=> 2A \(⋮\)2x - 1
<=> 3(2x - 1) + 5 \(⋮\) 2x - 1
<=> 5 \(⋮\)2x - 1 (vì 3(2x - 1) \(⋮\)2x - 1)
<=> 2x - 1 \(\in\)Ư(5) = {1; 5}
Với: +) 2x - 1 = 1 => 2x = 2 => x = 1
+) 2x - 1 = 5 => 2x = 6 => x = 3
Vậy ...
a: \(\Leftrightarrow\left(9x-2;2y+1\right)\in\left\{\left(1;17\right);\left(17;1\right);\left(-1;-17\right);\left(-17;-1\right)\right\}\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(\dfrac{1}{3};8\right);\left(\dfrac{19}{9};0\right);\left(\dfrac{1}{9};-9\right);\left(-\dfrac{5}{3};-1\right)\right\}\)
b: \(\Leftrightarrow xy+x+2y+2=7\)
\(\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
\(\Leftrightarrow\left(x+2;y+1\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)