Chứng minh rằng:
a, 17 không viết được dưới dạng tổng của 3 hợp số khác nhau .
b, Một số lẻ lớn hơn 17 đều viết được dưới dạng tổng của 3 hợp số khác nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) Tổng của ba hợp số khác nhau nhỏ nhất bằng 4+6+8=18
Do vậy số 17 không viết được dưới dạng tổng của ba hợp số khác nhau .
b) Gọi 2k+1 là số lẻ bất kì lớn hơn 17
Ta có : 2k+1 =4+9+( 2k-12 )
2k-12 là hợp số lớn hơn 4
4 ; 9 ;2k-12 là các hợp số khác nhau
- Gọi số đó là 17 + 2k ( vì các số đó là số lẻ )
Ta thấy 2k là hợp số
17 = 9 + 8 mà 9 và 8 đều là hợp số
Vậy mọi số lẻ > 17 đều viết được dưới dạng tổng của 3 hợp số khác nhau
Số lẻ lớn hơn 17 có dạng 17 + 2k (k \(\in\) N)
Do 2k chia hết cho 2 nên là hợp số
Lại có 17 = 9 + 8
Vậy 9;8 và 2k là 3 hợp số (đpcm).
gọi số đó là 17+2k(vì là các số đó là số lẻ)
ta thấy 2k là hợp số
17=9+8 mà 9 và 8 là hợp số
vậy mọi số lẻ lớn hơn 17 đều viết được dưới tổng của 3 hợp số
Ba hợp số khác nhau nhỏ nhất là: 4;6;8
Tổng của ba hợp số khác nhau nhỏ nhất bằng :
4 + 6 + 8 = 18
Vậy số 17 không thể viết được dưới dạng tổng của 3 hợp số khác nhau.
a) Do tổng của 3 hợp số nhỏ nhất là : 4 + 6+ 8 =18
Mà 18 > 17 nên 17 không thể viết được dưới dạng 3 hợp số khác nhau
a) Do tổng của 3 hợp số nhỏ nhất là 4+6+8=18
mà 18>17 nên 17 ko viết được dưới dạng 3 hợp số khác nhau