cho tam giác abc cân tại a có bac=20 trên nmp bờ ac không chứa b vẽ ax cy sao cho cax=20 acy=130 gọi d là giao điểm cy ax trên nmp bờ bd không chứa a vẽ tm giác bdk cân tại b có bdk=50 .cm a b k thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
ΔABC cân tại A
=>góc ABC=góc ACB=(180-34)/2=146/2=73 độ
Xét ΔABC có BC/sinA=AB/sinC=AC/sinB=2R
=>BC/sin34=8/sin73
=>\(BC\simeq4,68\left(cm\right)\)
b: Xét ΔADC có \(cosCAD=\dfrac{AC^2+AD^2-CD^2}{2\cdot AC\cdot AD}\)
=>\(8^2+10.6^2-CD^2=2\cdot8\cdot10.6\cdot cos42\)
=>\(CD\simeq7,09\left(cm\right)\)
Xét ΔACD có
\(\dfrac{AC}{sinADC}=\dfrac{CD}{sinCAD}\)
=>8/sinADC=7,09/sin42
=>\(sinADC\simeq0,76\)
=>\(\widehat{ADC}\simeq49^0\)
c:
góc DAB=góc DAC+góc BAC
=42+34
=76 độ
Kẻ BH vuông góc AD
=>BH=d(B;AD)
Xét ΔBHA vuông tại H có
sinHAB=BH/BA
=>BH/8=sin76
=>\(BH\simeq7,76\left(cm\right)\)
vi tam giac ABC cân tại A => AB = AC
tam giac BCD đều BC = DC
xét tam giác ABD và tam giac ACD
AB = AC (cmt)
BD = DC (cmt)
AD chung
từ 3 điều trên => tam giác ABD = tam giác ACD (c.c.c)
=> góc ADB = góc ADC => là tia phân giác của góc BCD
=> góc BDA = BDC : 2 = 60o : 2 = 30o
đ/s...
k cho minh nha
chúc bạn hoc tốt
Tam giác ABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-90^o\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ABx}+\widehat{ABC}+\widehat{ACB}+\widehat{ACy}=90^o+35^o+55^o\)
\(\Rightarrow\widehat{CBx}+\widehat{BCy}=180^o\)\
Mà 2 góc đó ở vị trí trong cùng phía
Nên Bx // Cy