tính chiều cao của một cây cổ thụ có bóng trên mặt đất dài 8m và có tia sáng từ đỉnh tạo với mặt đất một góc bằng 60 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chân cột đèn là điểm A, đỉnh cột đèn là điểm B và bóng của đỉnh cột trên mặt đất là C
Ta có tam giác ABC vuông tại A với \(AC=7,5\left(m\right)\) và \(\widehat{BCA}=42^0\)
Trong tam giác vuông ABC:
\(AB=AC.tan\widehat{BAC}=7,5.tan42^0\approx6,8\left(m\right)\)
Đáp án: ≈12 mét
Giải thích các bước giải:
Chiều cao của cây là 20.tan31≈12mét
\(\tan (C) = \dfrac{AB}{AC} \) ⇔ \(\tan (33) = \dfrac{AB}{40}\) ⇔ \(AB \) \(= 25,9 m\)
7: ΔABC vuông tại A có AB=12m; góc B=52 độ. Tính AC
AC=AB*tan52=12*tan52=15,36(m)
Bài 3:
Góc tạo bởi tia sáng với mặt đất là $\alpha$
Ta có:
$\tan \alpha=\frac{7}{4}\Rightarrow \alpha=60,26^0$
1: Chiều cao của cột đèn là:
7,5*tan42\(\simeq6,75\left(m\right)\)
\(\tan\widehat{BCA}=\dfrac{AB}{AC}=\dfrac{AB}{8}\Rightarrow\tan60^o=\dfrac{AB}{8}\Rightarrow AB=8\sqrt{3}\left(cm\right)\)
là sao mình k hiểu