Chứng minh rằng:
(a-1)(a-2)(1+a+a2)=a6 -9a3+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)
\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)
\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)
\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)
\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)
\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)
mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm
=> dpcm
Ta có: a + b = 1 ⇔ b = 1 – a
Thay vào bất đẳng thức a2 + b2 ≥ 1/2 , ta được:
a2 + (1 – a)2 ≥ 1/2 ⇔ a2 + 1 – 2a + a2 ≥ 1/2
⇔ 2a2 – 2a + 1 ≥ 1/2 ⇔ 4a2 – 4a + 2 ≥ 1
⇔ 4a2 – 4a + 1 ≥ 0 ⇔ (2a – 1)2 ≥ 0 (luôn đúng)
Vậy bất đẳng thức được chứng minh
\(a+b=1=>b=1-a\)
\(=>a^2+\left(1-a\right)^2\ge\dfrac{1}{2}\)
\(=>a^2+1-2a+a^2\ge\dfrac{1}{2}\)
\(\Leftrightarrow-2a+2a^2+1\ge\dfrac{1}{2}\)
\(\Leftrightarrow\left(-2a+2a^2+1\right).2\ge1\)
\(\Leftrightarrow-4a+4a^2+2\ge1\)
\(\Leftrightarrow-4a+4a^2+1\ge0\)
\(\Leftrightarrow\left(2a-1\right)^2\ge0\left(đúng\right)\)
\(''=''\left(khi\right)2a-1=0=>a=\dfrac{1}{2}\)
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(đpcm\right)\)
\(\left(a-1\right)\left(a-2\right)\left(1+a+a^2\right)\)
\(=\left(a^2-3a+2\right)\left(1+a+a^2\right)\)
\(=a^2+a+a^4-3a-3a^2-3a^3+2+2a+2a^2\)
\(=a^4-3a^3+2\)
Có sai không nhỉ?!