1.cho tam giác ABC vuông tại A(AB<AC),đường cao AH.Từ Bker tia Bx vuông góc AB ,tia Bx cắt tia AH tại K
a,tứ giác ABKC là hình gì?tại sao?
b,cm:tam giác ABK ~ tam giác CHA.Từ đó suy ra:AB.AC=AK.CH
c,cm:AH^2=HB.HC
d,giả sử BH=9cm,HC=16cm. Tính AB,AH
a) Ta có : \(AC//BK\left(cùng\text{ }\perp AB\right)\)
=> Tứ giác ABKC là hình thang
Mà \(\widehat{CAB}=90^0\left(gt\right)\)
=> Tứ giác ABKC là hình thang vuông.
b) Xét \(\Delta ABK\) và \(\Delta CHA\) có: \(\left\{{}\begin{matrix}\widehat{ABK}=\widehat{CHA}=90^0\left(gt\right)\\\widehat{KAB}=\widehat{ACH}\left(cùng\text{ }phụ\text{ }\widehat{ABC}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABK\sim\Delta CHA\left(g.g\right)\\ \Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{AC}\\ \Rightarrow AB\cdot AC=CH\cdot AK\)
c) Xét \(\Delta AHC\) và \(\Delta BHA\) có: \(\left\{{}\begin{matrix}\widehat{AHC}=\widehat{BHA}=90^0\left(gt\right)\\\widehat{ACH}=\widehat{BAH}\left(cùng\text{ }phụ\text{ }\widehat{ABC}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AHC\sim\Delta BHA\left(g.g\right)\\ \Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\\ \Rightarrow AH^2=CH\cdot BH\)
\(\text{d) Ta có }:AH^2=CH\cdot BH=9\cdot16=144\left(cm\right)\\ \Rightarrow AH=12\left(cm\right)\\ AB=HB+HC=9+16=25\left(cm\right)\)