K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t

-Chứng minh biểu thức nhỏ hơn 2 .

Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z

A<x+t+y+z+z+x+t+y/x+y+t+z

A<2(x+t+y+z)/x+y+t+z

A<2

-Chứng minh biêu thức lớn hơn 1

A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z

A>x+y+t+z/z+x+y+t

A>1

Mà 1<A<2

Suy ra A không phải là STN

Có gì sai thì bạn sửa nhé

2 tháng 1 2016

Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)

\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)

\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)

=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)

=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)

=>M>1(1)

Lại có: 

Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)

Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)

\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)

=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)

=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)

=>M<2(2)

Từ (1) và (2)

=>1<M<2

=>M không là số tự nhiên

=>ĐPCM

1 tháng 1 2016

nhan vao chu dung 0 se co cach giai

1 tháng 1 2016

4 hả thử coi nếu đúng tớ ghi cách giải

25 tháng 12 2015

câu hỏi tương tự nha bạn

(2x+1)(y-3)=48

mà 2x+1 lẻ; y-3>=-3 vì x,y là các số tự nhiên

nên \(\left(2x+1\right)\left(y-3\right)=1\cdot48=3\cdot16\)

=>\(\left(2x+1;y-3\right)\in\left\{\left(1;48\right);\left(3;16\right)\right\}\)

=>\(\left(2x;y\right)\in\left\{\left(0;51\right);\left(2;19\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;51\right);\left(1;19\right)\right\}\)

mà x,y là các số tự nhiên khác 0

nên \(\left(x;y\right)=\left(1;19\right)\)

=>\(x\cdot y=1\cdot19=19\) là số nguyên tố

21 tháng 6 2021

Ta có : \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)

Tương tự và cộng lại ta được : \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)(*)

Lại có : \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

Tương tự và cộng lại ta được : \(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)(**)

Từ (*) và (**) suy ra \(1< M< 2\)=> M không phải là số tự nhiên ( đpcm )