Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
Tương tự và cộng lại ta được : \(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)(*)
Lại có : \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự và cộng lại ta được : \(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)(**)
Từ (*) và (**) suy ra \(1< M< 2\)=> M không phải là số tự nhiên ( đpcm )
Đặt \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
Ta có : \(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\left(1\right)\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\left(2\right)\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\left(3\right)\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\left(4\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) và \(\left(4\right)\), ta có :
\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow\) \(1< M< 2\)
Mà 1 ; 2 là 2 số tự nhiên liên tiếp
\(\Rightarrow\) M có giá trị không phải là một số tự nhiên
Study well ! >_<
https://olm.vn/hoi-dap/detail/216357348142.html
Tham khảo nhé
x/(x+y+z)>x/(x+y+z+t)
tương tự cho 3 cái còn lại
=>M>x/(x+y+z+t)+y/(x+y+z+t)+z/(x+y+z+t)+t/(x+y+z+t)
=>m>(x+y+z+t)/(x+y+z+t)
=>M>1
x/(x+y+z)<1=>(x+t)/(x+y+t+z)>x/(x+y+z)
tương tự => M<2(x+y+z+t)/(x+y+z+t)
=> M<2
ta có 2>M>1=> m ko phải là số tự nhiên
Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t
-Chứng minh biểu thức nhỏ hơn 2 .
Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z
A<x+t+y+z+z+x+t+y/x+y+t+z
A<2(x+t+y+z)/x+y+t+z
A<2
-Chứng minh biêu thức lớn hơn 1
A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z
A>x+y+t+z/z+x+y+t
A>1
Mà 1<A<2
Suy ra A không phải là STN
Có gì sai thì bạn sửa nhé
Vì \(x;y;z;t\in N\)* nên ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
Cộng vế với vế ta được :
\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow1< M< 2\)
=> M có giá trị không phải là số tự nhiên
Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)
Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2
Vậy M không phải là số tự nhiên
Lời giải:
Với $x,y,z,t$ là số tự nhiên khác 0 thì:
$\frac{x}{x+y+z}> \frac{x}{x+y+z+t}$
$\frac{y}{x+y+t}> \frac{y}{x+y+z+t}$
$\frac{z}{y+z+t}> \frac{z}{x+y+z+t}$
$\frac{t}{x+z+t}> \frac{t}{x+y+z+t}$
$\Rightarrow M> \frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1$
$\Rightarrow M>1(*)$
Mặt khác:
Có: $\frac{x}{x+y+z}-\frac{x+t}{x+y+z+t}=\frac{-yt-tz}{(x+y+z)(x+y+z+t)}<0$
$\Rightarrow \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}$
Tương tự:
$\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}$
$\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}$
$\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}$
Cộng lại ta được: $M< \frac{(x+t)+(y+z)+(z+x)+(t+t)}{x+y+z+t}=2(**)$
Từ $(*); (**)\Rightarrow 1< M < 2$ nên $M$ không là số tự nhiên.