Tìm x , y \(\in\) Z biết
a, 3x + 5 \(⋮\) 2x + 1
b, 3x + 1 \(⋮\) 2x - 1
c, xy + x + 2y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a) (2x+1)(2y-3)=36
=> 2x+1 ; 2y-3 thuộc Ư(36)={-1,-2,-3,-4,-6,-9,-13,-18,-36,1,2,3,4,6,9,13,18,36}
Ta có bảng :
2x+1 | -1 | -2 | -3 | -4 | -6 | -9 | -13 | -18 | -36 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 18 | 36 |
2y-3 | -36 | -18 | -13 | -9 | -6 | -4 | -3 | -2 | -1 | 36 | 18 | 13 | 9 | 6 | 4 | 3 | 2 | 1 |
x | -1 | -3/2 | -2 | -5/2 | -7/2 | -5 | -7 | -19/2 | -37/2 | 0 | 1/2 | 1 | 3/2 | 5/2 | 4 | 6 | 17/2 | 35/2 |
y | -33/2 | -15/3 | -5 | -3 | -3/2 | -1/2 | 0 | 1/2 | 1 | 39/2 | 21/2 | 8 | 6 | 9/2 | 7/2 | 3 | 5/2 | 2 |
Vậy ta có các cặp x,y thõa mãn đề bài là : (-2,-5);(-7,0);(1,8);(6,3)
a) \(\left(x-30\right)\left(2y+1\right)=7=1.7=\left(-1.\right)\left(-7\right)\)
Ta xét bảng:
x-30 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 31 | 37 | 29 | 23 |
y | 3 | 0 | -4 | -1 |
c) \(xy+3x-7y=21\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=0\Leftrightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=3\end{cases}}\).
b), d) bạn làm tương tự.
a: \(\Leftrightarrow6x+10⋮2x+1\)
\(\Leftrightarrow6x+3+7⋮2x+1\)
\(\Leftrightarrow2x+1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{0;-2;3;-4\right\}\)
b: \(\Leftrightarrow6x+2⋮2x-1\)
\(\Leftrightarrow6x-3+5⋮2x-1\)
\(\Leftrightarrow2x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{1;0;3;-2\right\}\)