K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

\(M=-2x^2+2x-3\\ \Leftrightarrow2M=-4x^2+4x-6\\ \Leftrightarrow2M=-\left(4x^2-4x+4\right)-2\\ \Leftrightarrow2M=-\left(2x-2\right)^2-2\\ \Leftrightarrow M=\dfrac{-\left(2x-2\right)^2-2}{2}\)

Ta có :

\(-\left(2x-2\right)^2\le0\\ \Rightarrow-\left(2x-2\right)^2-2\le-2\\ \Rightarrow\dfrac{-\left(2x-2\right)^2-2}{2}\le\dfrac{-2}{2}\\ \Rightarrow M\le-1\)

\(\Rightarrow Max\left(M\right)=-1\Leftrightarrow2x-2=0\Rightarrow x=1\)

.......

\(N=3x-x^2-4\\ \Leftrightarrow N=-\left(x^2-3x+4\right)\\ \Leftrightarrow N=-\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+\dfrac{16}{4}\right)\\ \Rightarrow N=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Ta có :

\(-\left(x-\dfrac{3}{2}\right)^2\le0\\ \Rightarrow-\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}\le0+\dfrac{7}{4}\\ \Rightarrow N\le\dfrac{7}{4}\\ \Rightarrow Max\left(M\right)=\dfrac{7}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

4 tháng 1 2019

\(P=\dfrac{3}{x^2-6x+10}=\dfrac{3}{\left(x-3\right)^2+1}\)

Ta có :

\(\left(x-3\right)^2\ge0\\ \Rightarrow\left(x-3\right)^2+1\ge1\\ \Rightarrow\dfrac{3}{\left(x-3\right)^2+1}\ge\dfrac{3}{1}\Rightarrow P\ge3\\ \Rightarrow Min\left(P\right)=3\Leftrightarrow x-3=0\Rightarrow x=3\)

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

2 tháng 7 2018

a,\(M=-2x^2+2x-3\)

\(\Rightarrow2M=-4x^2+4x-6=-\left(4x^2-4x+1\right)-5=-\left(2x-1\right)^2-5\)

\(-\left(2x-1\right)^2\le0\Rightarrow2M=-\left(2x-1\right)^2-5\le-5\Rightarrow M\le-\frac{5}{2}\)

Dấu "=" xảy ra khi x=1/2

Vậy Mmax=-5/2 khi x=1/2

b, \(N=3x-x^2-4=-x^2+3x-4=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\)

Vì \(-\left(x-\frac{3}{2}\right)^2\le0\Rightarrow N=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Nmax=-7/4 khi x=3/2

c, \(P=\frac{3}{x^2-6x+10}=\frac{3}{x^2-6x+9+1}=\frac{3}{\left(x-3\right)^2+1}\)

Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\Rightarrow\frac{1}{\left(x-3\right)^2+1}\le1\Rightarrow\frac{3}{\left(x-3\right)^2+1}\le3\)

Dấu "=" xảy ra khi x=3

Vậy Pmax=3 khi x=3

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

21 tháng 12 2021

a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

21 tháng 12 2021

câu b c d e đâu anh ơi

 

4 tháng 9 2016

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

a) Để biểu thức vô nghĩa thì \(\dfrac{3x-2}{5}-\dfrac{x-4}{3}=0\)

\(\Leftrightarrow\dfrac{3x-2}{5}=\dfrac{x-4}{3}\)

\(\Leftrightarrow3\left(3x-2\right)=5\left(x-4\right)\)

\(\Leftrightarrow9x-6=5x-20\)

\(\Leftrightarrow9x-5x=-20+6\)

\(\Leftrightarrow4x=-14\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)