K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

VP=√(x^2-4x+4)=|x-2|

dt hai nua dt (d1): y=2-x; (x<2);

(d2): y=x-2 (x≥2)

VT: (d3): y=x-3

(d3) nam phia duoi (d1) &(d2) =>VT>VP=>dpcm

25 tháng 5 2018

\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}=|x-2|\)

 x - 2 > x - 3 

7 tháng 7 2021

\(\sqrt{4x+8}+3\sqrt{x+2}=3+\dfrac{4}{5}\sqrt{25x+50}\left(x\ge-2\right)\)

\(\Rightarrow2\sqrt{x+2}+3\sqrt{x+2}-4\sqrt{x+2}=3\Rightarrow\sqrt{x+2}=3\Rightarrow x=7\)

\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\dfrac{4+2\sqrt{3}}{2}}+\sqrt{\dfrac{4-2\sqrt{3}}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}+\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

$x^4-4x+5=(x^4-2x^2+1)+(2x^2-4x+2)+2$

$=(x^2-1)^2+2(x-1)^2+2\geq 2>0$ với mọi $x\in\mathbb{R}$

Ta có đpcm.

3 tháng 2 2022

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)

 

10 tháng 8 2019
https://i.imgur.com/jPdshp8.jpg
11 tháng 12 2021

thanks

11 tháng 12 2021

gọi bthuc trên là: A

xét hiệu A-2/3( bn tự rút gọn đưa về thành HĐT nhé tui đánh bàn phím  mỏi tay lắm)

cm A-2/3>o=>A>2/3