Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(x^2-\frac{1}{2}x\right)^2+\frac{3}{4}\left(x+\frac{2}{3}\right)^2+\frac{2}{3}>0\)
Ko biết xét khoảng:v
https://hoc247.net/hoi-dap/toan-8/chung-minh-a-x-10-x-9-x-4-x-1-0-faq392123.html
\(<=>x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+\frac{3}{4}>0\)
\(<=>x\left(x-1\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
\(<=>\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
\(<=>\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}>0\)
Nhận xét:
\(\left(x-\frac{1}{2}\right)^2\left(x^4+x^2+1\right)\ge0\left(1\right)\)
\(\left(x^4+x^2+1\right)\ge1=>-\frac{1}{4}\left(x^4+x^2+1\right)\ge-\frac{1}{4}\)
\(=>-\frac{1}{4}\left(x^4+x^2+1\right)+\frac{3}{4}\ge\frac{1}{2}\left(2\right)\)
Từ 1 và 2 => Tổng > 0 => ĐPCM
Ta có:
(x-1)(x-3)(x-4)(x-6)+9=(x2-7x+6)(x2-7x+12)+9
Đặt x2-7x+6=y
<=>y(y+6)+9=y2+6y+9=(y+3)2 lớn hơn hoặc bàng 0
\(x^2+xy+y^2+1>0\)
\(\Leftrightarrow x^2+2.x.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>1\)
=>ĐPCM
\(x^4+x^2+2>0\)
\(\Leftrightarrow\left(x^2\right)^2+2x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>\frac{7}{4}\)
=>ĐPCM
\(\left(x+3\right)\left(x-11\right)+2003>0\)
\(\Leftrightarrow x^2-8x-33+2003>0\)
\(\Leftrightarrow x^2-8x+16+1954>0\)
\(\Leftrightarrow\left(x-4\right)^2+1954>1954\)
=>ĐPCM
\(-9x^2+12x-15< 0\)
\(\Leftrightarrow-\left(3x^2+2.3.2x+4+11\right)< 0\)
\(\Leftrightarrow-\left[\left(3x+2\right)^2+11\right]< 11\)
=>ĐPCM
\(-5-\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-x-2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)< 0\)
\(\Leftrightarrow-5-\left[\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\right]< \frac{-11}{4}\)
=>ĐPCM
Lời giải:
$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$
$=(x+\frac{1}{2})^2+\frac{3}{4}$
$\geq 0+\frac{3}{4}$
$> 0$
Ta có đpcm.
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh