Tính: A= (1/101 + 1/102 + 1/103 + ... + 1/200) ÷ (1/1.2 + 1/3.4 + 1/5.6 + ... + 1/ 199.200)
Giúp mình với. Giải chi tiết và đúng mình tik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:1/1.2+1/3.4+1/5.6+...+1/199.200
=1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=(1+1/3+1/5+1...199)-2(1/2+1/4+1/6+...+200)
=(1+1/2+1/3+...+1//100)+(1/101+1/102+...+1/200)-(1+1/2+1/3+...+100)
=(1/101+1/102+...+200)=mẫu
bạn xem lại là so sonh hay là tính nha nếu ko minh làm lại cho
Ta có: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(1)
Thay (1) vào đề bài
\(\Rightarrow\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}=1\)
\(\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}\)
\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}}\)
\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)}\)
\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)}\)
\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}\)
\(=\frac{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}{\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}}\)
\(=1\)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<