tính tổng
B= 1/2+1/22+...+1/298+1/299
Tìm X thuộc Q,biết
|3x+5|=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)
Đặt \(B=2^{99}+2^{98}+...+2+1\)
\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)
\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)
\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
1+2-3-4+5+6-7-8+9+10-11-12+........+298-299-300+301+302 =
1+2+(5-3)+(6-4)+(9-7)+(10-8)+…….+(301-299)+(302-300)=
Từ 302 đến 3 có số cặp là [(302-3):1+1]:2=150 cặp. Mà mỗi cặp có giá trị là 2
Vậy 1+2-3-4+5+6-7-8+9+10-11-12+........+298-299-300+301+302 =
1+2+2×150=3+300=303
*Ý 1 :Áp dụng công thức tính nhanh dãy phân số, ta làm như sau:
Lấy 2.B như sau:
\(2.B=2.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow2.B=2.\frac{1}{2}+2.\frac{1}{2^2}+...+2.\frac{1}{2^{98}}+2.\frac{1}{2^{99}}\)
\(\Leftrightarrow2.B=1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
Ta thấy: \(2.B\)và \(B\)cùng có \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
Nên lấy \(2.B-B\)ta sẽ có:
\(\Rightarrow2.B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}\)
Vậy tổng \(B=1-\frac{1}{2^{99}}.\)
* Ý 2:\(\left|3x+5\right|=10\)
\(\Rightarrow\orbr{\begin{cases}3x+5=10\\3x+5=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;\frac{5}{3}\right\}.\)
Đặt :
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A=3+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(3+\dfrac{1}{2}+....+\dfrac{1}{2^{98}}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=2-\dfrac{1}{2^{99}}\)
Vậy..
Ta có: \(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)
\(\Leftrightarrow2A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2\)
\(\Leftrightarrow2A-A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2-2^{100}+2^{99}+2^{98}+...+2^2+2+1\)
\(\Leftrightarrow A=2^{101}-2\cdot2^{100}+1\)
\(\Leftrightarrow A=1\)
a: \(\dfrac{1}{2}B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow-\dfrac{1}{2}B=\dfrac{1}{2^{100}}-\dfrac{1}{2}\)
hay \(B=\dfrac{-1}{2^{99}}+1\)
b: |3x+5|=10
=>3x+5=10 hoặc 3x+5=-10
=>3x=5 hoặc 3x=-15
=>x=-5 hoặc x=5/3