a) Chứng minh rằng với giá trị bất kỳ của biến x, các đa thức sau đều dương
P(x)= x^2 -6x+10 Q(x)= (x-3)(x-5)+4
b) Chứng minh rằng không có giá trị nào của biến x để các đa thức sau dương
A(x)= 4x-5-x^2 B(x)= 24x-18-9x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
a)2x(2x+7)=4(2x+7)
2x(2x+7)-4(2x+7)=0
(2x+7)(2x-4)=0
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)
b)Ta có:x3-4x2+ax=x3-3x2-x2+ax
=x2(x-3)-x(x-a)
Để x3-4x2+ax chia hết cho x-3 thì a=3
a, \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)
Vậy biểu thức ko phụ thuộc biến x
b, \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6=-8\)
Vậy biểu thức ko phụ thuộc biến x
\(a)\)
\(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(\Leftrightarrow P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
\(\Leftrightarrow P=0\)
Vậy P không phụ thuộc vào giá trị của biến
\(b)\)
\(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow Q=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(\Leftrightarrow Q=-8\)
Vậy Q không phụ thuộc vào giá trị của biến
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
a.
\(P\left(x\right)=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1>1\forall x\in R\)\(Q\left(x\right)=\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=x^2-8x+16+3=\left(x-4\right)^2+3>0\forall x\in R\)b.
\(A\left(x\right)=4x-5-x^2=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1< 0\forall x\in R\)\(B\left(x\right)=24x-18-9x^2=-\left(9x^2-24x+18\right)=\left(-9x^2-24x+16+2\right)=-\left(3x+4\right)^2-2< 0\forall x\in R\)
a, P(x) =x^2-6x+10=x^2-6x+9+1=(x+3)^2+1>0
Q(x) =(x-3)(x-5)+4=x^2-8x+15+4=x^2-8x+19=x^2-8x+16+3=(x-4)^2+3>0
Kết luận:với bất kì giá trị nào của biến x thì 2 đa thức trên dương
b, A(x) =4x-5-x^2=-x^2+4x-5=-x^2+4x-4-1=-(x-2)^2-1<0
B(x) =24x-18-9x^2=-9x^2+24x-18= -(3x)^2+24x-16-2=-(3x-4)^2-2<0
Kết luận : ko có giá trị nào của biến x mà 2 đa thức trên dương