Cho hình cữ nhật ABCD có AB=16cm, AD=12cm. Từ B vẽ đường thẳng vuông góc với AC, cắt AC, CD tại H và E: a) Tính AH và HC
b) AD cắt BE tại F. Chứng minh rằng: AD.AF = AB2
c) Tính diện tích ABED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD=12 nên BC=12
AC=20
\(AH=\dfrac{AB^2}{AC}=\dfrac{256}{20}=12.8\left(cm\right)\)
CH=20-12,8=7,2cm
b: Xét ΔAHF vuông tại H và ΔADC vuông tại D có
góc DAC chung
DO đó: ΔAHF đồng dạng với ΔADC
Suy ra: AH/AD=AF/AC
hay \(AD\cdot AF=AH\cdot AC=AB^2\)
Pitago tam giác vuông ACD:
\(AC=\sqrt{AD^2+CD^2}=\sqrt{AD^2+AB^2}=20\)
Hệ thức lượng tam giác vuông ABC với đường cao BH:
\(AB^2=AH.AC\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{64}{5}\)
\(HC=AC-AH=\dfrac{36}{5}\)
b.
Hai tam giác vuông ADC và AHF có chung góc \(\widehat{HAD}\)
\(\Rightarrow\Delta_VADC\sim\Delta_VAHF\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AC}{AF}\Rightarrow AD.AF=AC.AH\) (1)
Mặt khác theo hệ thức lượng tam giác vuông ABC:
\(AB^2=AH.AC\) (2)
(1);(2) \(\Rightarrow AD.AF=AB^2\)
b: Xét ΔAHB vuông tại H và ΔACE vuông tại E có
góc A chung
=>ΔABH đồng dạng với ΔACE
Xét ΔBHC vuông tại H và ΔCFA vuông tại F có
góc BCA=góc CAF
=>ΔBHC đồng dạng với ΔCFA
c: AB/AC=AH/AE
=>AB*AE=AH*AC
BC/AC=CH/AF=BH/CF
=>DA/AC=CH*AF
=>AC*CH=AD*AF
=>AC^2=AB*AE+AD*AF
Áp dụng định lý Pitago cho tam giác vuông ABC
\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:
\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)
\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)
b.
Ta có: \(EC=AC-AE=3,6\left(cm\right)\)
Do AB song song CF, theo định lý Talet:
\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)
\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADF:
\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)
Pitago tam giác vuông BCF:
\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)
Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)
\(\Rightarrow FH=AD=6\left(cm\right)\)
\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
a: AC=20cm
\(AH=\dfrac{AB^2}{AC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)
HC=AC-AH=7,2(cm)
b: Xét ΔAHF vuông tại H và ΔADC vuông tại D có
góc DAC chung
Do đS: ΔAHF đồng dạng với ΔADC
Suy ra: AH/AD=AF/AC
hay \(AH\cdot AC=AD\cdot AF\)
=>\(AD\cdot AF=AB^2\)