K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=20cm

\(AH=\dfrac{AB^2}{AC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)

HC=AC-AH=7,2(cm)

b: Xét ΔAHF vuông tại H và ΔADC vuông tại D có

góc DAC chung

Do đS: ΔAHF đồng dạng với ΔADC

Suy ra: AH/AD=AF/AC

hay \(AH\cdot AC=AD\cdot AF\)

=>\(AD\cdot AF=AB^2\)

a: AD=12 nên BC=12

AC=20

\(AH=\dfrac{AB^2}{AC}=\dfrac{256}{20}=12.8\left(cm\right)\)

CH=20-12,8=7,2cm

b: Xét ΔAHF vuông tại H và ΔADC vuông tại D có

góc DAC chung

DO đó: ΔAHF đồng dạng với ΔADC

Suy ra: AH/AD=AF/AC

hay \(AD\cdot AF=AH\cdot AC=AB^2\)

NV
6 tháng 7 2021

Pitago tam giác vuông ACD:

\(AC=\sqrt{AD^2+CD^2}=\sqrt{AD^2+AB^2}=20\)

Hệ thức lượng tam giác vuông ABC với đường cao BH:

\(AB^2=AH.AC\Rightarrow AH=\dfrac{AB^2}{AC}=\dfrac{64}{5}\)

\(HC=AC-AH=\dfrac{36}{5}\)

b.

Hai tam giác vuông ADC và AHF có chung góc \(\widehat{HAD}\)

\(\Rightarrow\Delta_VADC\sim\Delta_VAHF\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AC}{AF}\Rightarrow AD.AF=AC.AH\) (1)

Mặt khác theo hệ thức lượng tam giác vuông ABC:

\(AB^2=AH.AC\) (2)

(1);(2) \(\Rightarrow AD.AF=AB^2\)

NV
6 tháng 7 2021

undefined

b: Xét ΔAHB vuông tại H và ΔACE vuông tại E có

góc A chung

=>ΔABH đồng dạng với ΔACE

Xét ΔBHC vuông tại H và ΔCFA vuông tại F có

góc BCA=góc CAF

=>ΔBHC đồng dạng với ΔCFA

c: AB/AC=AH/AE

=>AB*AE=AH*AC

BC/AC=CH/AF=BH/CF

=>DA/AC=CH*AF

=>AC*CH=AD*AF

=>AC^2=AB*AE+AD*AF

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7

Gì nhiều vậy???

 

2 tháng 4 2017

mk cũng đang mắc câu này,bạn bk chưa trả lời giúp mk đi

NV
9 tháng 8 2021

Áp dụng định lý Pitago cho tam giác vuông ABC

\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:

\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)

\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)

b.

Ta có: \(EC=AC-AE=3,6\left(cm\right)\)

Do AB song song CF, theo định lý Talet:

\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)

\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADF:

\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)

Pitago tam giác vuông BCF:

\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)

Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)

\(\Rightarrow FH=AD=6\left(cm\right)\)

\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

NV
9 tháng 8 2021

undefined