Không dùng máy tính; hãy so sánh các số thực sau:
a) \(\sqrt{17}+\sqrt{26}\) và 9 b) \(\sqrt{48}\)và 13-\(\sqrt{35}\)
c) \(\sqrt{31}-\sqrt{19}\)và 6-\(\sqrt{17}\) d) 9-\(\sqrt{58}\)và \(\sqrt{80}-\sqrt{59}\)
e) \(\sqrt{13}-\sqrt{12}\)và \(\sqrt{12}-\sqrt{11}\) f) \(\sqrt{7-\sqrt{21+4\sqrt{5}}}\)và \(\sqrt{5}\) -1
g) \(\sqrt{5}+\sqrt{10}+1\)và \(\sqrt{35}\) h) \(\dfrac{15-2\sqrt{10}}{3}\) và \(\sqrt{15}\)
i) \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) (100 dấu căn) và 3
a: \(\sqrt{17}+\sqrt{26}=\dfrac{9}{\sqrt{26}-\sqrt{17}}>9\)
e: \(\sqrt{13}-\sqrt{12}=\dfrac{1}{\sqrt{13}+\sqrt{12}}\)
\(\sqrt{12}-\sqrt{11}=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)
mà \(\sqrt{13}+\sqrt{12}>\sqrt{11}+\sqrt{12}\)
nên \(\sqrt{13}-\sqrt{12}< \sqrt{12}-\sqrt{11}\)
d: \(9-\sqrt{58}=\sqrt{49}-\sqrt{58}< 0< \sqrt{80}-\sqrt{59}\)