K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 1 2022

\(a^3+b^3+c^3-3abc=1\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)

Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)

(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)

\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)

\(\Rightarrow a^2+b^2+c^2\ge1\)

19 tháng 1 2022

Bạn có thể giải thích phần (1) <=> với cái đó được ko. Mình vẫn chưa hiểu mấy bước sau lắm

13 tháng 9 2021

Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\)  ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Mà \(a^2+b^2+c^2=3abc\)

=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)

=> \(a+b+c\ge3\)

Áp dụng bđt bunhia dạng phân thức ta có:

\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)

Đặt \(a+b+c=x\left(x\ge3\right)\)

=> \(M\ge\frac{x^2}{x+6}\)

Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)

<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)

<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)

=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)

=>\(MinM=1\)xảy ra khi a=b=c=1

12 tháng 6 2016

Từ 2a+2b+2c=3abc chia cả hai vế cho abc>0 ta được

\(2\left(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}\right)=3=>\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{2}\)

\(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

Ta có 

a+b+c=0

⇔⇔(a+b+c)2=0

⇔⇔a2+b2+c2+2ab+2bc+2ca=0 mà a2+b2+c2=2

⇒⇒2ab+2bc+2ca=-2

⇔⇔(2ab+2bc+2c)2=4

⇔⇔4a2b2+4c2b2+4a2c2+8abc(a+b+c)=4 mà a+b+c=0

⇒⇒4a2b2+4c2b2+4a2c2=4 (1)

⇔⇔2a2b2+2c2b2+2a2c2=2

Mặt khác:

a2+b2+c2=2 ⇒⇒(a2+b2+c2)2=4

⇔⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=4 (2)

Từ (1) và (2) ⇒⇒4a2b2+4c2b2+4a2c2=a4+b4+c4+2(a2b2+b2c2+c2a2)

⇔⇔2a2b2+2c2b2+2a2c2=a4+b4+c4

⇒⇒a4+b4+c4=2 (vì 2a2b2+2c2b2+2a2c2=2)

25 tháng 5 2017

Từ \(2a+2b+2c=3abc\)

\(\Leftrightarrow\frac{2}{3bc}+\frac{2}{3ac}+\frac{2}{3ab}=1\left(1\right)\)

Khi đó \(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3\sqrt[3]{\frac{b}{a^2}\cdot\frac{c}{b^2}\cdot\frac{a}{c^2}}=3\sqrt[3]{\frac{1}{abc}}\)

\(P_{Min}\) xảy ra khi \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}=3\sqrt[3]{\frac{1}{abc}}\forall a=b=c\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow a=b=c=\sqrt{2}\)

Khi đó \(P_{Min}=3\sqrt[3]{\frac{1}{abc}}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}=\frac{3\sqrt{2}-6}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{2}\)

26 tháng 5 2017

Bài này giải như này cơ:

\(2a+2b+2c=3abc\)\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{3}{2}\)

\(P=\frac{\left(a-1\right)+\left(b-1\right)}{a^2}+\frac{\left(b-1\right)+\left(c-1\right)}{b^2}+\frac{\left(c-1\right)+\left(a-1\right)}{c^2}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(a-1\right)\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+\left(b-1\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\left(c-1\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{2\left(a-1\right)}{ac}+\frac{2\left(b-1\right)}{ab}+\frac{2\left(c-1\right)}{bc}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\)

\(\ge\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}-3=\sqrt{3.\frac{3}{2}}-3=\frac{3\sqrt{2}-6}{2}\)

Vậy \(minP=\frac{3\sqrt{2}-6}{2}\Leftrightarrow a=b=c=\sqrt{2}\)

21 tháng 3 2019

Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath

EM tham khảo nhé!

21 tháng 3 2019

Thank you chụy