Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\) ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Mà \(a^2+b^2+c^2=3abc\)
=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)
=> \(a+b+c\ge3\)
Áp dụng bđt bunhia dạng phân thức ta có:
\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)
Đặt \(a+b+c=x\left(x\ge3\right)\)
=> \(M\ge\frac{x^2}{x+6}\)
Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)
<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)
<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)
=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)
=>\(MinM=1\)xảy ra khi a=b=c=1
Từ 2a+2b+2c=3abc chia cả hai vế cho abc>0 ta được
\(2\left(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}\right)=3=>\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{2}\)
\(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Ta có
a+b+c=0
⇔⇔(a+b+c)2=0
⇔⇔a2+b2+c2+2ab+2bc+2ca=0 mà a2+b2+c2=2
⇒⇒2ab+2bc+2ca=-2
⇔⇔(2ab+2bc+2c)2=4
⇔⇔4a2b2+4c2b2+4a2c2+8abc(a+b+c)=4 mà a+b+c=0
⇒⇒4a2b2+4c2b2+4a2c2=4 (1)
⇔⇔2a2b2+2c2b2+2a2c2=2
Mặt khác:
a2+b2+c2=2 ⇒⇒(a2+b2+c2)2=4
⇔⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=4 (2)
Từ (1) và (2) ⇒⇒4a2b2+4c2b2+4a2c2=a4+b4+c4+2(a2b2+b2c2+c2a2)
⇔⇔2a2b2+2c2b2+2a2c2=a4+b4+c4
⇒⇒a4+b4+c4=2 (vì 2a2b2+2c2b2+2a2c2=2)
Từ \(2a+2b+2c=3abc\)
\(\Leftrightarrow\frac{2}{3bc}+\frac{2}{3ac}+\frac{2}{3ab}=1\left(1\right)\)
Khi đó \(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3\sqrt[3]{\frac{b}{a^2}\cdot\frac{c}{b^2}\cdot\frac{a}{c^2}}=3\sqrt[3]{\frac{1}{abc}}\)
\(P_{Min}\) xảy ra khi \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}=3\sqrt[3]{\frac{1}{abc}}\forall a=b=c\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow a=b=c=\sqrt{2}\)
Khi đó \(P_{Min}=3\sqrt[3]{\frac{1}{abc}}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}=\frac{3\sqrt{2}-6}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\sqrt{2}\)
Bài này giải như này cơ:
\(2a+2b+2c=3abc\)\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{3}{2}\)
\(P=\frac{\left(a-1\right)+\left(b-1\right)}{a^2}+\frac{\left(b-1\right)+\left(c-1\right)}{b^2}+\frac{\left(c-1\right)+\left(a-1\right)}{c^2}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a-1\right)\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+\left(b-1\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\left(c-1\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{2\left(a-1\right)}{ac}+\frac{2\left(b-1\right)}{ab}+\frac{2\left(c-1\right)}{bc}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\)
\(\ge\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}-3=\sqrt{3.\frac{3}{2}}-3=\frac{3\sqrt{2}-6}{2}\)
Vậy \(minP=\frac{3\sqrt{2}-6}{2}\Leftrightarrow a=b=c=\sqrt{2}\)
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6