K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Làm cả 3 phần :))

Giải

a) Xét △AOB và △DOC có :

góc ABD = góc ACD ( gt )

góc AOB = góc DOC ( đđ )

=> ΔAOB đồng dạng ΔDOC (g.g ) (đpcm)

b) Xét ΔAOD và ΔBOC có :

góc AOD = góc BOC ( đđ )

OBOA=OCODOBOA=OCOD ( ΔAOB đồng dạng ΔDOC)

=> ΔAOD đồng dạng ΔBOC ( c.g.c ) ( đpcm )

c) Xét ΔAEC và ΔBED có :

góc E chung

gócADO = góc BCO ( ΔAOD đồng dạng ΔBOC )

=> ΔAEC đồng dạng ΔBED ( g.g )

=> EAEB=ECEDEAEB=ECED => EA.ED=EB.EC (đpcm)

15 tháng 4 2020

TOAN LOP 8 AI MA BIET THANG CHO DO ,DIEN,HAP HAY

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔMBD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))

Do đó: ΔABD=ΔMBD(cạnh huyền-góc nhọn)

c) Xét ΔDMC vuông tại M có DC là cạnh huyền(DC là cạnh đối diện với \(\widehat{CMD}=90^0\))

nên DC là cạnh lớn nhất trong ΔDMC(Định lí)

\(\Leftrightarrow DC>DM\)(1)

Ta có: ΔABD=ΔMBD(cmt)

nên DA=DM(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra DA<DC

d) Xét ΔADI vuông tại A và ΔMDC vuông tại M có 

DA=DM(cmt)

\(\widehat{ADI}=\widehat{MDC}\)(hai góc tương ứng)

Do đó: ΔADI=ΔMDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DI=DC(hai cạnh tương ứng)

Xét ΔDIC có DI=DC(cmt)

nên ΔDIC cân tại D(Định nghĩa tam giác cân)

a: CD vuông góc AD; CD vuông góc SA

=>CD vuông góc (SAD)

b: BD vuông góc AC; BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

14 tháng 5 2016

a, xét tam giác AOB và tam giác DOC có:

góc AOB= góc COD

góc ABD=góc ACD

do đó : tam giác AOB đồng dạng với tam giác DOC(g-g)

b, theo cm câu a: tam giác AOB đồng dạng với tam giác DOC 

=> \(\frac{AO}{OD}=\frac{OB}{OC}\)

xét tam giác AOD và tam giác BOC có:

\(\frac{OA}{OD}=\frac{OB}{OC}\)

góc AOD= góc BOC(2 góc đối đỉnh)

do đó: tam giác AOD đồng dạng với tam giác BOC(c-g-c)

c, xét tam giác DBE và tam giác CAE có:

góc DEC chung

góc EDB=góc ACE( 2 góc tương ứng của tam giác AOD đồng dạng với tam giác BOC)

do đó: tam giác DBE đồng dạng với tam giác CAE(g-g)

=>\(\frac{EB}{EA}=\frac{ED}{EC}\)

\(\Rightarrow EA.ED=EB.EC\)

 

12 tháng 7 2023

Mày nhìn cái chóa j

27 tháng 10 2023

ΔADC vuông tại D

=>\(AC^2=AD^2+DC^2\)

=>\(AC^2=8^2+6^2=100\)

=>AC=10(cm)

ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

=>M là trung điểm chung của AC và BD và AC=BD

=>MD=MB=MA=MC=AC/2=5(cm)

Xét ΔDME vuông tại M và ΔDCB vuông tại C có

\(\widehat{MDE}\) chung

Do đó: ΔDME đồng dạng với ΔDCB

=>\(\dfrac{ME}{CB}=\dfrac{DM}{DC}\)

=>\(\dfrac{ME}{6}=\dfrac{5}{8}\)

=>\(ME=3,75\left(cm\right)\)