Cho a,b,c>0 . CMR :
a^3/b + b^3/c + c^3/a >= ab + bc + ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
Cho mk nói bạn Alan Walker chỉ là hs lớp 6 sao tài vậy
Nếu bạn ko biết làm thì thôi
Làm nhục anh em bạn ạ
cho 2 biểu thức mà c/m 1 biểu thức M là sao
Biểu thức N vứt sọt à hay làm cái j v :V
tớ cũng nghĩ vậy nhưng mãi sau mới biết chứng minh M =N rồi chứng minh N >=(a+b+c)/8 để suy ra M >=(a+b+c)/8
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
Lời giải:
Áp dụng BĐT AM-GM ta có:
\((ab+c)(ac+b)\leq \left(\frac{ab+c+ac+b}{2}\right)^2=\frac{(a+1)^2(b+c)^2}{4}\)
\((ab+c)(bc+a)\leq \left(\frac{ab+c+bc+a}{2}\right)^2=\frac{(b+1)^2(c+a)^2}{4}\)
\((ac+b)(bc+a)\leq \left(\frac{ac+b+bc+a}{2}\right)^2=\frac{(c+1)^2(a+b)^2}{4}\)
Nhân theo vế:
\(\Rightarrow [(ab+c)(ac+b)(bc+a)]^2\leq [(a+b)(b+c)(c+a)]^2.\frac{[(a+1)(b+1)(c+1)]^2}{64}\)
Mà:
\((a+1)(b+1)(c+1)\leq \left(\frac{a+1+b+1+c+1}{3}\right)^3=(\frac{6}{3})^3=8\)
Do đó:
\(\Rightarrow [(ab+c)(ac+b)(bc+a)]^2\leq [(a+b)(b+c)(c+a)]^2.\frac{8^2}{64}\)
\(\Leftrightarrow[(ab+c)(ac+b)(bc+a)]^2\leq [(a+b)(b+c)(c+a)]^2\)
\(\Rightarrow (ab+c)(ac+b)(bc+a)\leq (a+b)(b+c)(c+a)\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Ta có: \(a^3+b^3+c^3\ge3abc\) ( BĐT Cauchy )
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{abc}{b}+\dfrac{abc}{c}+\dfrac{abc}{a}\)
Hay \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ac+ab+bc\left(đpcm\right)\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{a^3}{b}+ab\) ≥ \(2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\left(1\right)\)
\(\dfrac{b^3}{c}+bc\) ≥ \(2\sqrt{\dfrac{b^3}{c}.bc}=2\sqrt{b^4}=2b^2\left(2\right)\)
\(\dfrac{c^3}{a}+ac\) ≥ \(2\sqrt{\dfrac{c^3}{a}.ac}=2\sqrt{c^4}=2c^2\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\) ≥ \(2\left(a^2+b^2+c^2\right)\) ( * )
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(a^2+b^2\) ≥ \(2ab\left(4\right)\)
\(b^2+c^2\) ≥ \(2bc\left(5\right)\)
\(c^2+a^2\) ≥ \(2ac\left(6\right)\)
Cộng từng vế của ( 4 ; 5 ; 6) , ta có :
\(2\left(a^2+b^2+c^2\right)\) ≥ \(2\left(ab+bc+ac\right)\) ( ** )
Từ ( * ; ** ) , ta có :
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\) ≥ \(2\left(ab+bc+ac\right)\)
⇔ \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\) ≥ \(ab+bc+ac\)