Chứng minh rằng :
a, Neu a > 1 thi a > \(\sqrt{a}\)
b, Neu 0 < a < 1 thi a <\(\sqrt{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì b>0 ,d>0 ,a/b<c/d
suy ra ad<bc
suy ra ad+ab<bc+ab
suy ra a(b+d) <b(a+c)suy ra a/b <a+c/b+d
lại có ad <bc suy ra ad+cd <bc+cd
suy ra d(a+c )<c(b+d)suy ra a+c/b+d <c/d
vậy a/b <a+c/b+d<c/d
Ta có a<b
=>ac<bc (c>0)
=> ac+ ab < bc+ ab
=> a(b+c) < b(a+c)
=> a/b< a+c/b+c(đpc/m)
a: \(A=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)
Vì a>1 nên \(\sqrt{a}-1>0\)
=>A>0
hay \(a>\sqrt{a}\)
b: \(A=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)
Vì a<1 nên \(\sqrt{a}-1< 0\)
=>A<0
hay \(a< \sqrt{a}\)