1.CMR với mọi số nguyên n , ta có :
n3 + 3n2 + 2n
2. Tìm STN n sao cho : 2n - 1 ⋮ 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
Bạn bấm vào chữ xanh này nhé -> CMR với mọi x thuộc N* các cặp số sau đây là nguyên tố cùng nhau :a) n và n+1b) 3n+2 và 5n+3 c) 2n+1 và 2n+3đ) 2n+1 và 6n+5
Mình xin câu 2
2. Nếu n = 3k ( k ∈ N ) thì : \(2^n-1=2^{3k}-1=8^k-1⋮7\)
Nếu : n = 3k + 1 ( k ∈ N ) thì \(2^n-1=2^{3k+1}-1=2\left(2^{3k}-1\right)+1=BS7+1\)
Nếu n = 3k + 2 ( k ∈ N ) thì :
\(2^n-1=2^{3k+1}-1=4\left(2^{3k}-1\right)+3=BS7+3\)
Vậy , \(2^n-1⋮7\Leftrightarrow n=3k\left(k\in N\right)\)
1. \(n^3+3n^2+2n\)
= \(n^3+n^2+2n^2+2n\)
= \(n^2\left(n+1\right)+2n\left(n+1\right)\)
= \(n\left(n+1\right)\left(n+2\right)\)
Do đó là tích 3 số nguyên liên tiếp chia hết cho 6 ( thiếu đề :v)