K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

Mình xin câu 2 leuleu

2. Nếu n = 3k ( k ∈ N ) thì : \(2^n-1=2^{3k}-1=8^k-1⋮7\)

Nếu : n = 3k + 1 ( k ∈ N ) thì \(2^n-1=2^{3k+1}-1=2\left(2^{3k}-1\right)+1=BS7+1\)

Nếu n = 3k + 2 ( k ∈ N ) thì :

\(2^n-1=2^{3k+1}-1=4\left(2^{3k}-1\right)+3=BS7+3\)

Vậy , \(2^n-1⋮7\Leftrightarrow n=3k\left(k\in N\right)\)

2 tháng 6 2018

1. \(n^3+3n^2+2n\)

= \(n^3+n^2+2n^2+2n\)

= \(n^2\left(n+1\right)+2n\left(n+1\right)\)

= \(n\left(n+1\right)\left(n+2\right)\)

Do đó là tích 3 số nguyên liên tiếp chia hết cho 6 ( thiếu đề :v)

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

20 tháng 1 2016

A=n3+n2+2n2+2n

=n2(n+1)+2n(n+1)

=(n+1)(n2+2n)

=n(n+1)(n+2)

Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3

=>n(n+1)(n+2) luôn chia hết cho 3 với mọi 

=>A luôn chia hết cho 3 với mọi số nguyên n.

22 tháng 8 2021

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

22 tháng 8 2021

 n3−n⋮3∀n∈Z

30 tháng 11 2023

Viết  lời giải ra giúp mình nhé !

 

11 tháng 10 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

11 tháng 10 2021

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

27 tháng 11 2015

Bạn bấm vào chữ xanh này nhé -> CMR với mọi x thuộc N* các cặp số sau đây là nguyên tố cùng nhau :a) n và n+1b) 3n+2 và 5n+3 c) 2n+1 và 2n+3đ) 2n+1 và 6n+5