K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Áp dụng định lý Viete cho pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=1\end{matrix}\right.\)

Khi đó:

\(A=x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3\)

\(=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)

\(=\sqrt{(\sqrt{x_1}+\sqrt{x_2})^2}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{3+2}(3-1)=2\sqrt{5}\)

25 tháng 5 2018

∆=9-4=5

x1=(3+√5)/2; x2=(3-√5)/2

4x1=(√5+1)^2; 4x2=(√5-1)^2

4.A=(3+√5)(√5+1)+(3-√5)(√5-1)

=(4√5+3+5)+(4√5-3-5)=8√5

A=2√5

27 tháng 5 2021

undefined

CHÚC BẠN HỌC TỐT NHÁyeu

10 tháng 5 2018

Ta có: \(\Delta=4m^2+4m-11\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)

 Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)

\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)

\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)

\(\Rightarrow\) ...

 

22 tháng 5 2021

giúp mình với ạ ! Mình cảm ơn ạ 

11 tháng 2 2022

\(x^2-\left(m+1\right)x+m+4=0\left(1\right)\)

\(\Rightarrow\Delta>0\Leftrightarrow\left(m+1\right)^2-4\left(m+4\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>5\end{matrix}\right.\)\(\left(2\right)\)

\(ddkt-thỏa:\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(x1=0\Rightarrow\left(1\right)\Leftrightarrow m=-4\Rightarrow\left(1\right)\Leftrightarrow x^2+3x=0\Leftrightarrow\left[{}\begin{matrix}x1=0\\x2=-3< 0\left(loại\right)\end{matrix}\right.\)

\(x1\ne0\) \(\Rightarrow0< x1< x2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\m+4>0\end{matrix}\right.\)\(\Rightarrow m>-1\)\(\left(3\right)\)

\(\left(2\right)\left(3\right)\Rightarrow m>5\)

\(\Rightarrow\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)

\(\Leftrightarrow x1+x2+2\sqrt{x1x2}=12\Leftrightarrow m+1+2\sqrt{m+4}=12\)

\(\Leftrightarrow m+4+2\sqrt{m+4}-15=0\)

\(đặt:\sqrt{m+4}=t>5\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=-5\left(ktm\right)\\t=3\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow m\in\phi\)

11 tháng 2 2022

Để pt có 2 nghiệm pb 

\(\left(m+1\right)^2-4\left(m+4\right)=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m+4\end{matrix}\right.\)

Ta có : \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=12\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=12\)

Thay vào ta được \(m+1+2\sqrt{m+4}=12\Leftrightarrow2\sqrt{m+4}=11-m\)đk : m >= -4 

\(\Leftrightarrow4\left(m+4\right)=121-22m+m^2\Leftrightarrow m^2-26m+105=0\)

\(\Leftrightarrow m=21\left(ktm\right);m=5\left(ktm\right)\)

 

17 tháng 12 2023

\(\left(5+\sqrt{24}\right)^{x^2-2x-2}=49-10\sqrt{24}\)

=>\(\left(5+\sqrt{24}\right)^{x^2-2x-2}=\left(5-\sqrt{24}\right)^2\)

=>\(\left(5+\sqrt{24}\right)^{x^2-2x-2}=\left(5+\sqrt{24}\right)^{-2}\)

=>\(x^2-2x-2=-2\)

=>\(x^2-2x=0\)

=>x(x-2)=0

=>x=0 hoặc x=2

=>x1-x2=0-2=-2

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

21 tháng 5 2017

Theo hệ thức Vi-ét ta có:

x1+x2=\(-\frac{-1}{1}=1\)

x1x2=\(\frac{1+m}{1}=1+m\)

=> x1x2(x1x2-2)=3(x1+x2)

<=> (1+m)(1+m-2)=3

<=> m2-1=3

<=>m2=4

<=> m=-2 hoặc m =2 (loại)

Vậy m = -2

30 tháng 5 2021

\(x^2-2x-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}u=x_1+\left(x_2\right)^2\\v=x_2+\left(x_1\right)^2\end{matrix}\right.\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}u+v=\left(x_1+x_2\right)+\left(x_2+x_1\right)^2-2x_1x_2\\uv=2x_1x_2+x_1^3+x_2^3=2x_1x_2+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\)

=>u và v là nghiệm của pt \(t^2-8t+12=0\)