K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

BC=10(pitago)

DB=4.3(tc tia phân giác trong tam giác)

DC=5.7

24 tháng 3 2019

A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):

\(\widehat{B}\): chung

\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)

B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\Rightarrow BE=10-4=6\left(cm\right)\)

\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)

mà \(AH^2=BH.HC\) nên AH=BE

Vậy đề sai.

C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)

\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuong tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\)

Do đó: ΔABI\(\sim\)ΔCBD

3 tháng 5 2019

a) Xét tam giác HBA và tam giác ABC có

góc H = góc A (=90 độ)

góc ABC chung

suy ra tam giác HBA đồng dạng với tam giác ABC

b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có

BC^2= AB^2+AC^2

BC^2=12^2+16^2

BC^2 = 400

BC=căn 400 = 20 cm

+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)

suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)

suy ra HA/16=12/20

SUY RA HA=(16*12)/20 =9,6cm

c) ta có DE là tia phân giac

suy ra AE/EB=AD/BD 1

VÌ DF là tia p/g

suy ra FC/FADC/AD 2

TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA

suy ra EA/EB*DB/DC*FC/FA =1(đfcm)

3 tháng 5 2019
https://i.imgur.com/uPsEWVL.png
22 tháng 3 2018

a) Ta có:   \(\widehat{HAB}+\widehat{HBA}=90^0\)

                 \(\widehat{HAB}+\widehat{HAC}=90^0\)

suy ra:   \(\widehat{HBA}=\widehat{HAC}\)

Xét 2 tam giác vuông:  \(\Delta HBA\) và  \(\Delta HAC\) có:

           \(\widehat{BHA}=\widehat{AHC}=90^0\)

          \(\widehat{HBA}=\widehat{HAC}\)   (CMT)

suy ra:   \(\Delta HBA~\Delta HAC\)

b)   \(BC=BH+HC=25+36=61\)cm

 \(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)

suy ra:    \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm

            \(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm

p/s: tham khảo

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: \(BC=HB+HC=61\left(cm\right)\)

\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)

\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao