K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

Ta có tính chất: tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3

Xét 3 số tự nhiên liên tiếp P- 1; P2; P+ 1 là 3 số tự nhiên liên tiếp 

=> Tích (P- 1).P2.(P+ 1) chia hết cho 3

Vì P không chia hết cho 3 nên P2 không chia hết cho 3 => ít nhất trong hai số P- 1; P+ 1 có 1 số chia hết cho 3 

=> chúng không thể cùng là số nguyên tố

Vậy...

bài làm

Xét 3 số tự nhiên liên tiếp P- 1; P2; P+ 1 là 3 số tự nhiên liên tiếp 

=> Tích (P- 1).P2.(P+ 1) \(⋮\) cho 3

Do P không chia hết cho 3 nên P2 \(⋮̸\) cho 3

=> ít nhất trong hai số P- 1; P+ 1 có 1 số \(⋮\) cho 3 

=> chúng không thể cùng là số nguyên tố

Vậy.....................

hok tốt

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

20 tháng 4 2015

 

Giả sử (p1+p2):2 là số nguyên tố, Khi đó ta có p1+p2=2d với d nguyên tố
Vì p1, p2 là hai số nguyên tố liên tiếp, và p1 > p2 nên từ p1+p2=2d ⇒ p1 > d > p2 như vậy giữa p1, p2 còn số d là số nguyên tố (mâu thuẫn với giả thuyết) ⇒ (p1+p2);2 là hợp số.

Hoặc:

p2+1 là chẵn
=> (p1+p2)/2 là chẵn
=> Nếu nó là SNT thì p2+1 phải là số tự nhiên.
Mà nó lại là số chẵn
=> p2+1 = 2
=> p2=1 (k phải snt)

Vậy (p1+p2)/2 là hợp số

26 tháng 7 2017

ta có :

số chia hết  cho 2 phải là số chẵn

số nào chia cho 2 cũng có thương là số chẵn ( khác 2 ) 

=> (P1 + P2 ) : 2 = SỐ CHĂN CHIA HẾT 2 => SỐ ĐÓ CÓ TRÊN 2 ƯỚC

=> ĐPCM

30 tháng 12 2015

n.n có trên 2 ước là 1, n và n.n và các ước khác

 

6 tháng 11 2020

vì n không chia hết cho 3 => n^2 không chia hết cho 3 

xét 3 số tự nhiên liên tiếp n^2-1; n^2; n^2+1

vì n^2 không chia hết cho 3 => 1 trong 2 số n^2-1 và n^2 sẽ chia hết cho 3

=> 1 trong 2 số đó sẽ là hợp số 

vậy n^2-1 và n^2+1 không thể đồng thời là số nguyên tố

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.

Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

TH1: $p=6k+1$ thì:

$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$

Nếu $k$ lẻ thì $3k+1$ chẵn.

$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$

Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$

TH2: $p=6k+5$

$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn

$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$

Nếu $k$ lẻ thì $k+1$ chẵn

$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$

Vì n không chí hết cho 3 => n2 không chia hết cho 3

Xét 3 stn liên tiếp n2 - 1; n2; n2 + 1

Vì n2 không chia hết cho 3 => 1 trong 2 số n2 - 1 và n2 = 1 sẽ chia hết cho 3

=> 1 trong 2 số đó sẽ là hợp số

Vậy n2 - 1 và n2 + 1 không thể đồng thời là snt