Trên bảng ban đầu ghi số 2 và 4. Ta thực hiện cách viết lên trên bảng như sau: nếu trên bảng đã có hai số, giả sử là a, b (a # b), ta viết thêm lên bảng giá trị a + b + ab. Hỏi thực hiện như vậy trên bảng có thể xuất hiện số 2017 không ? Vì sao ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hử, giả sử ta bớt đi 2 số \(2,\sqrt{2}\),thì ta sẽ viết lên 2 số mới là \(\frac{2+\sqrt{2}}{\sqrt{2}}=\sqrt{2}+1\)(*)và \(\frac{2-\sqrt{2}}{\sqrt{2}}=\sqrt{2}-1\)
(*) xuất hiện rồi nhá, lượt đầu tiên luôn
Thực hiện xóa 2 số bất kì trên bảng rồi ghi lại 1 số tự nhiên bằng tổng 2 số vừa xóa. Tưởng tưởng mỗi lần xóa 2 số thì chúng ta sẽ thêm 2 số ban đầu vì thế các chữ số xuất hiện trên bảng không thay đổi chỉ thay đổi là giữa các số có thêm dấu cộng. Như vậy cứ làm đến bước cuối cùng thì số xuất hiện trên bảng sẽ là: 1 + 2 + 3 + 4 +...+ 2020 = ( 1 + 2020) 2020 : 2 = 2041210
Ta có: c = a + b + ab = (a+1)(b+1) = - 1
Để xuất hiện số 2020 thì trên bảng phải tồn tại hai số a, b sao cho: (a + 1)(b +1) - 1 = 2020
=> (a+1) (b + 1) = 2021 = 1.2021=43.47
Không mất tính tổng quát: g/s a < b => a + 1< b + 1
TH1: a + 1 = 1 ; b + 1 = 2021
=> a = 0 loại vì số 1 là số bé nhất trên bảng
Th2: a +1 = 43; b + 1 = 47 <=> a = 42 ; b = 46
Xét xem số 42; 46 có thể xuất hiện trên bảng được không
Xét số 42. khi đó trên bảng tồn tại số a1; b1 sao cho: 42 = (a1 + 1)(b1+1) - 1
<=> (a1 + 1)(b1+1) = 43 = 43.1 => loại vì a1 hoặc b1 =0
Vậy không làm xuất hiện số 42 trên bảng nên không thể làm xuất hiện số 2020.
Số 2021; 2019 tương tự
số đó có thể là 100 : 100 =b 99 = a
a không lớn hơn b
hoặc : 1 =a 0=b
không có số trên bảng là 0