Cho tam giác APN vuông tại A, đường cao AD. Trên nửa mặt phẳng bờ AD không chứa P vẽ hình vuông ABCD. Cạnh AN cắt BC tại M. Chứng minh rằng:
a) BM=PD
b) tam giác APM cân tại A.
c) 1/AD2=1/AN2+1/AM2
Vẽ thêm hình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông cân tại A.Gọi D là 1 điểm bất kì trên cạnh BC ( D khác B và C).Và nằm trên cùng 1 nửa mặt phẳng BC và điểm A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :
a) 2 tam giác : AMB=ADC
b) A là trung điểm của MN.
a.Ta có : ΔABC vuông cân tại A (gt)
Mà MB⊥BC,NC⊥BC
→ˆMBA=ˆACD=45 độ (Tính chất tam giác vuông cân)
Lại có : AD⊥MN,AB⊥AC
→ˆMAB+ˆBAD=ˆBAD+ˆDAC(=90độ)
→ˆMAB=ˆDAC
Mặt khác AB=AC→ΔMAB=ΔDAC(g.c.g)
→AM=AD,BM=DC
b.Tương tự câu a ta chứng minh được AN=AD,CN=BD
→AM=AN→A là trung điểm MN
c.Từ a,b →BC=BD+DC=CN+BM
d.Ta có : AM=AD,AD⊥MN→ΔAMD vuông cân tại A
Tương tự ΔAND vuông cân tại A
→ˆAMD=ˆAND=45độ→ΔDMN vuông cân tại D
a: Xét tứ giác ABDC có góc BAC+góc BDC=180 độ
=>ABDC là tư giác nội tiếp
=>góc ABD+góc ACD=180 độ
c: góc CAD=góc CBD
góc BAD=góc BCD
mà góc CBD=góc BCD
nên góc CAD=góc BAD
=>AD là phân giác của góc BAC
d: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=CB/2
ΔBCD vuông tại D
mà DM là trung tuyến
nen MD=CB/2
=>MA=MD