K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Cho tam giác ABC vuông cân tại A.Gọi D là 1 điểm bất kì trên cạnh BC ( D khác B và C).Và nằm trên cùng 1 nửa mặt phẳng BC và điểm A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) 2 tam giác : AMB=ADC

b) A là trung điểm của MN.

25 tháng 5 2020

a.Ta có : ΔABC vuông cân tại A (gt)

Mà MB⊥BC,NC⊥BC

→ˆMBA=ˆACD=45 độ (Tính chất tam giác vuông cân)

Lại có : AD⊥MN,AB⊥AC

→ˆMAB+ˆBAD=ˆBAD+ˆDAC(=90độ)

→ˆMAB=ˆDAC

Mặt khác AB=AC→ΔMAB=ΔDAC(g.c.g)

→AM=AD,BM=DC

b.Tương tự câu a ta chứng minh được AN=AD,CN=BD

→AM=AN→A là trung điểm MN

c.Từ a,b →BC=BD+DC=CN+BM

d.Ta có : AM=AD,AD⊥MN→ΔAMD vuông cân tại A

Tương tự ΔAND vuông cân tại A

→ˆAMD=ˆAND=45độ→ΔDMN vuông cân tại D

a: Xét tứ giác ABDC có góc BAC+góc BDC=180 độ

=>ABDC là tư giác nội tiếp

=>góc ABD+góc ACD=180 độ

c: góc CAD=góc CBD

góc BAD=góc BCD

mà góc CBD=góc BCD

nên góc CAD=góc BAD

=>AD là phân giác của góc BAC

d: ΔABC vuông tại A
mà AM là trung tuyến

nên MA=CB/2

ΔBCD vuông tại D

mà DM là trung tuyến

nen MD=CB/2

=>MA=MD