Cho bất phương trình (ẩn x)
mx + 4 \(\le\) 2x + m\(^2\)
Giải và biện luận bất phương trình theo m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m x - m 2 > 2 x - 4 ⇔ (m - 2)x > (m - 2)(m + 2)
Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;
Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;
Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.
\(\Leftrightarrow\left(m-2\right)x>m^2-4=\left(m-2\right)\left(m+2\right)\)
nếu m =2 => 0.x > 0.4 => vô nghiệm
Nếu m> 2 => m-2 >0 chia hai vế cho m-2<0
\(\Rightarrow x>m+2\)
Nếu m<2 => m-2 <0 chia hai cho m-2 <0
\(\Rightarrow x< m+2\)
Kết luận:
Nếu m =2 Phương trình vô nghiêm
nếu m> 2 có nghiệm: \(x>m+2\)
nếu m<2 có nghiệm: \(x< m+2\)
\(m\left(x-m\right)\le4x+5.\left(1\right)\\ \Leftrightarrow mx-m^2-4x-5\le0.\\ \Leftrightarrow\left(m-4\right)x\le5+m^2.\circledast\)
+) Nếu \(m-4>0.\Leftrightarrow m>4.\)
Khi \(\circledast\) có nghiệm: \(x\le\dfrac{5+m^2}{m-4}.\)
+) Nếu \(m-4< 0.\Leftrightarrow m< 4.\)
Khi \(\circledast\) có nghiệm: \(x\ge\dfrac{5+m^2}{m-4}.\)
+) Nếu \(m-4=0.\) \(\Leftrightarrow m=4.\)
Thay vào \(\circledast\) ta có:
\(0x\le5+4^2.\Leftrightarrow0x\le21\) (vô lý).
Kết luận:
Với \(m>4\) thì (1) có tập nghiệm \(S=\) \((-\infty;\dfrac{5+m^2}{m-4}].\)
Với \(m< 4\) thì (1) có tập nghiệm \(S=\) \([\dfrac{5+m^2}{m-4};+\infty).\)
Với \(m=4\) thì (1) có tập nghiệm \(S=\) \(\phi.\)
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
Điều kiện của bất phương trình là x ≥ 0
Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0
Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0
Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)
Nếu m > 1 thì tập nghiệm của bất phương trình là {0}
mx + 4 ≤ 2x + m2
⇔ mx - 2x ≤ m2 - 4
⇔ x( m - 2) ≤ ( m + 2)( m - 2) ( 1)
*) Với : m = 2 , ta có :
( 1 ) ⇔ 0x ≤ 4.0 ( luôn đúng )
*) Với : m > 2 , ta có :
( 1 ) ⇔ x ≤ m + 2
* Với : m < 2 , ta có :
( 1 ) ⇔ x ≥ m + 2
KL...