K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2021

\(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2\left(x^2-y^2\right)+\left(x+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)

\(=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=4x^2\)

11 tháng 9 2021
2(x-y)(x+y)+(x+y)²+(x-y)² =2(x²-y²)+2x²+2y² =4x²
15 tháng 10 2021

\(2\left(x-y\right)\left(x++y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=4x^2\)

DT
19 tháng 6 2023

\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)

\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)

\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)

15 tháng 11 2019

\(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2\)

\(=\left(x-y-x-y\right)^2-\left(2x\right)^2\)

\(=\left(-2y^2\right)-\left(2x\right)^2=\left(2y\right)^2-\left(2x\right)^2=\left(2y-2x\right)\left(2y+2x\right)=4\left(y-x\right)\left(x+y\right)\)

20 tháng 12 2016

giup mik nha tí 30p nữa mình on cam on mnlolang

20 tháng 12 2016

Hình như ghi sai đề hay sao í

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

Lời giải:

$x(x+y)-y(x+y)+x^2+y^2=(x-y)(x+y)+x^2+y^2$

$=x^2-y^2+x^2+y^2=2x^2$

1 tháng 11 2021

\(A=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4\left(y^2-1\right)\)

   \(=\left(x-y-x-y\right)^2-4\left(y^2-1\right)\)

   \(=\left(-2y\right)^2-4y^2+4=4\)

22 tháng 9 2018

(x + y + z)2 - 2(x + y + z)(x + y) + (x + y)2

= (x + y + z + x +y)2

= (2x + 2y + z)2

Chúc bạn học tốt !

22 tháng 9 2018

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

\(=\left(x+y+z-x-y\right)^2\)

\(=z^2\)

Áp dụng BĐT: \(\left(a-b\right)^2=a^2-2ab+b^2\)

10 tháng 10 2021

\(\left(x^2+xy+y^2\right)\left(x-y\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-y^3-x^3-y^3=-2y^3\)

5 tháng 9 2021

\(a,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=4xy\\ b,\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)=\left(x+y-x+y\right)^2=4y^2\\ c,\left(x^2-1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x^3+1\right)\\ =x^4-x^3+x-1\)

5 tháng 9 2021

a. (x + y)2 - (x - y)2

= (x + y - x + y)(x + y + x - y)

= 2y . 2x

= 4xy

b. (x + y)2 + (x - y)2 - 2(x + y)(x - y)

= (x2 + 2xy + y2) + (x2 - 2xy + y2) - 2(x2 - y2)

= x2 + 2xy + y2 + x2 - 2xy + y2 - 2x2 + 2y2

= x2 + x2 - 2x2 + 2xy - 2xy + y2 + y2 + 2y2

= 4y2

c. (x2 - 1)(x2 - x + 1)

= x4 - x3 + x2 - x2 + x - 1

= x4 - x3 + x - 1

1 tháng 8 2019

(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2

= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)

= z2.