Cho: a;b;c;d>0. Chứng minh rằng: \(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Áp dụng bđt AM-GM ta có:
\(\dfrac{a^2}{4}+b^2\ge2\sqrt{\dfrac{a^2b^2}{4}}=\dfrac{2ab}{2}=ab\)
\(\dfrac{a^2}{4}+c^2\ge2\sqrt{\dfrac{a^2c^2}{4}}=\dfrac{2ac}{2}=ac\)
\(\dfrac{a^2}{4}+d^2\ge2\sqrt{\dfrac{a^2d^2}{4}}=\dfrac{2ad}{2}=ad\)
\(\dfrac{a^2}{4}+1\ge2\sqrt{\dfrac{a^2}{4}}=\dfrac{2a}{2}=a\)
Cộng theo vế: \(a^2+b^2+c^2+d^2+1\ge ab+ac+ad+a=a\left(b+c+d+1\right)\)Dấu "=" xảy ra khi: \(a=2;b=c=d=1\)
\(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4\ge4ab+4ac+4ad+4a\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4-4ab-4ac-4ad-4a\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-2ac+4c^2\right)+\left(a^2-4ad^2+4d^2\right)+\left(a^2-4a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2\ge0\) ( luôn đúng)
Dấu "=" xảy ra khi: a = 2; b = c = d = 1