K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Bài 1.

a) Do hai phân thức bằng nhau , ta có :

( x +2)P( x2 - 22) = ( x - 1)Q( x -2)

=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)

Suy ra : P = x - 1 ; Q = ( x + 2)2

b) Do hai phân thức bằng nhau , ta có :

( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)

= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)

Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2

Q = ( x + 2)( x - 1) = x2 + x + 2

4 tháng 11 2017

Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)

-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)

b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)

Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)

-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)

- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)

29 tháng 4 2017

a)

\(\dfrac{P}{Q}=\dfrac{R}{S}\Rightarrow PS=QR\)

\(\Leftrightarrow PS+QS=QR+QS\)

\(\Leftrightarrow S\left(P+Q\right)=Q\left(R+S\right)\)

điều kiện Q,s khác 0 => chia hau vế cho QS

\(\Leftrightarrow\dfrac{S\left(P+Q\right)}{QS}=\dfrac{Q\left(R+S\right)}{QS}\Leftrightarrow\dfrac{\left(P+Q\right)}{Q}=\dfrac{\left(R+S\right)}{S}\) đpcm

27 tháng 11 2021

\(R=p\dfrac{l}{S}\)

Chọn C

21 tháng 10 2021

a: \(\cos\alpha=\dfrac{1}{2}\)

\(\tan\alpha=\sqrt{3}\)

\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)

29 tháng 5 2018

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne0\\x\ne1\end{matrix}\right.\)

a )

\(S=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

b )

\(S=3\)

\(\Leftrightarrow x-\sqrt{x}+1=3\)

\(\Leftrightarrow x-\sqrt{x}-2=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=4\end{matrix}\right.\)

Vậy \(x=4\)

21 tháng 6 2017

làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)

\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)

\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)

21 tháng 6 2017

ok thỏa thuận rồi tui làm nửa sau thui nhé :D

Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:

\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)

Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)

Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:

\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)

\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)

\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)

Can you continue

29 tháng 4 2019

1a)

\(D=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(ĐK:a\ge0\right)\)

\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

21 tháng 11 2022

2:

a: \(E=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: a^2+3a=0

=>a(a+3)=0

=>a=0(nhận) hoặc a=-3(loại)

Khi a=0 thì \(E=\dfrac{-4}{-2}=2\)