Cho đường tròn tâm O và dây BC cố định. lấy điểm A ở chính giữa cung BC nhỏ và M trên cung BC lớn sao cho MC >= MB. Đường MA cắt tiếp tuyến qua C của đường tròn tâm O và BC lần lượt tại Q, I. Đường MB cắt CA tại P.
a. Chứng minh rằng PQCM nội tiếp và PQ song song với BC
b. Tiếp tuyến tại A cắt tiếp tuyến tại C ở N. Chứng minh 1/CI +1/CQ=1/CN
c. Chứng minh rằng MB.MC=IB.IC+IM^2
d. Khi M di động, tìm vị trí M để bán kính đường trong ngoại tiếp tam giác MBI có độ dài max
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
a: góc AID=1/2(sđ cung AD+sđ cung CB)
=1/2(sđ cung MD+sđ cung MC)
=1/2*sđ cung CD
=góc DAI
=>ΔAID cân tại D
b: góc PAI=góc PDI(1/2sđ cung MC=1/2sđ cung CB)
=>PDAI nội tiếp
a: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC và góc OBA=góc OCA=90 đọ
Xét tứ giác ABOC có
góc OBA=góc OCA=góc BOC=90 độ
AB=AC
=>ABOC là hìh vuông
b: Xét (O) có
MB,MI là tiếp tuyến
=>MB=MI và góc IOM=góc BOM=1/2*góc IOB
Xét (O) có
NC,NI là tiếp tuyến
=>NC=NI và góc ION=góc CON=1/2*góc IOC
mà góc MON=1/2*góc BOC=45 độ
nên góc HON=45 độ
góc BOC=90 độ
=>sđ cung BC=90 độ
=>góc NCM=1/2*sđ cung BC=45 độ
=>góc NCH=45 độ
Vì góc NCH=góc NOH
nên OHNC nội tiếp
Dễ thấy b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4
Biến đổi P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x
= (x2 – 2)2 – x(x2 – 2) – 6x2
Từ đó Q(y) = y2 – xy – 6x2
Tìm m, n sao cho m.n = - 6x2 và m + n = - x chọn m = 2x, n = -3x
Ta có: Q(y) = y2 + 2xy – 3xy – 6x2
= y(y + 2x) – 3x(y + 2x)
= (y + 2x)(y – 3x)
Do đó: P(x) = (x2 + 2x – 2)(x2 – 3x – 2).
* Nếu đa thức P(x) có chứa ax4 thì có thể xét đa thức Q(x) = P(x)/a theo cách trên.
a: Xét ΔAPE và ΔACP có
góc APE=góc ACP
góc PAE chung
=>ΔAPE đồng dạng với ΔACP
=>AP^2=AE*AC=AN^2
Xét ΔAND và ΔABN có
góc AND=góc ABN
góc NAD chung
=>ΔAND đồng dạng với ΔABN
=>AD*AB=AN^2
=>AD*AB=AE*AC
=>AD/AC=AE/ABB
=>ΔADE đồng dạng vơi ΔACB
=>góc ADE=góc ACB
b: góc ADE=góc ACB
=>góc BDE+góc BCE=180 độ
=>BDEC nội tiếp