K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AH*BC=BK*AC

=>BC/AC=BK/AH=6/5

=>BH/AC=3/5

=>CH/AC=3/5

=>CH/3=AC/5=k

=>CH=3k; AC=5k

AH^2+HC^2=AC^2

=>16k^2=32^2=1024

=>k^2=64

=>k=8

=>CH=24cm; AC=40cm

=>BC=48cm; AB=40cm

b: Xét ΔCKB vuông tại K và ΔCHA vuông tại H có

góc C chung

=>ΔCKB đồng dạng với ΔCHA

=>CK/CH=CB/CA

=>CK*CA=CH*CB=1/2BC^2

=>2*CK*CA=BC^2

a: Xét ΔCKB vuông tại K và ΔCHA vuông tại H có

góc C chung

=>ΔCKB đồng dạng với ΔCHA

=>CK/CH=CB/CA

=>CA*CK=CH*CB

b: BH=CH=10/2=5cm

AH=căn 13^2-5^2=12cm

BK*AC=AH*BC

=>BK*13=12*10=120

=>BK=120/13(cm)

29 tháng 5 2022

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

29 tháng 5 2022

refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

31 tháng 12 2017

???, bạn ơi, hình như có 2 điểm M, : " AM cắt BC,BK lần  lượt tại M và N " ?

1 tháng 1 2018

A B C H K

dựa vào Pi-ta-go, tính được 18 cm và tam giác ABC cân tại A nên H sẽ là trung điểm của CB => HC=15cm

dễ dàng chứng minh \(\Delta AHC\infty\Delta BKC\left(g-g\right)\)

 =>\(\frac{HC}{KC}=\frac{AC}{BC}\Rightarrow\frac{AC}{30}=\frac{15}{18}=\frac{5}{6}\Rightarrow AC=25\)

và đến đây dựa vào Pi-ta-go tính được AH=20 

^_^

23 tháng 11 2023

loading... a) Ta có:

OB = OC (bán kính)

⇒ O nằm trên đường trung trực của BC (1)

Do ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC (2)

Từ (1) và (2) suy ra O ∈ AH

⇒ O ∈ AD

Vậy AD là đường kính của (O)

b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC

Do AH là đường trung trực của BC (cmt)

⇒ H là trung điểm của BC

⇒ CH = BC : 2

= 12 : 2

= 6 (cm)

∆AHC vuông tại H

⇒ AC² = AH² + CH² (Pytago)

⇒ AH² = AC² - CH²

= 10² - 6²

= 64

⇒ AH = 8 (cm)

⇒ sinACH = AH/AC

= 4/5

⇒ ACH ≈ 53⁰

⇒ BCK ≈ 53⁰

∆BCK vuông tại K

⇒ sinBCK = BK/BC

⇒ BK = BC.sinBCK

= 10.sin53⁰

≈ 8 (cm)