Cho \(\Delta\)ABC cân tại A, đường trung tuyến AM ( M\(\in\)BC) biết AB=13 cm, BC= 10cm
a. Chứng minh \(\Delta\)AMB = \(\Delta\)AMC
b. Gọi G là trọng tâm của tam giác ABC. Tính độ dài AG.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha!
a.
Xét tam giác ABM và tam giác ACM có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
BM = CM (AM là trung tuyến của tam giác ABC)
=> Tam giác ABM = Tam giác ACM (c.g.c)
b.
Tam giác ABM = Tam giác ACM (theo câu a)
=> M1 = M2 (2 góc tương ứng)
mà M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 180/2 = 90
=> AM _I_ BC
( Cái này bạn chứng minh theo cách: AM là trung tuyến của tam giác ABC cân tại A nên AM là đường trung trực của tam giác ABC cũng được. Tại mình sợ bạn chưa học tới)
BM = CM = BC/2 (AM là trung tuyến của tam giác ABC)
=> BM = CM = 10/2 = 5
Áp dụng định lí Pytago vào tam giác ABM vuông tại A ta có:
AB^2 = BM^2 + AM^2
13^2 = 5^2 + AM^2
AM^2 = 169 - 25
AM = 12
Ta có: AG = 2/3 AM (tính chất trọng tâm)
=> AG = 2/3 . 12
AG = 8
a)Xét tam giác AMB và tam giác AMC có:
AM chung
AB=AC(do tam giác ABC cân tại A)
BM=MC(đường trung tuyến AM cắt BC tại M)
=>tam giác AMB = tam giác AMC (c.c.c)
b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)
mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC
c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)
Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82
<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)
a) Xét ΔABC có AB=AC=5
=> ΔABC cân tại A
ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)
=>\(\widehat{B}=\widehat{C}\)(tc)
Xét ΔABM và ΔACM có
AB=AC gt
có AM là trung tuyến => BM=CM
\(\widehat{B}=\widehat{C}\) (cmt)
=>ΔABM = ΔACM (cgc)
b) có ΔABC cân
mà AM là trung tuyến => AM là đường cao (tc Δ cân)
c) ta có AM là trung tuyến =>
M là trung điểm của BC
=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm
Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o
=> AM2+BM2=AB2
=> AM2+32=52
=> AM =4 cm
d) Xét ΔBME và ΔCMF có
\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)
BM=CM (cmt)
\(\widehat{B}=\widehat{C}\)
=>ΔBME = ΔCMF (ch-cgv)
=>EM=FM( 2 góc tương ứng)
Xét ΔMEF có
EM=FM (cmt)
=> ΔMEF cân tại M
a)Vì M là trung điểm BC (gt)
=> MB = MC
Xét △AMB và △AMC có
AB=AC (gt)
AM : cạnh chung
MB=MC (cmt)
=> △AMB = △AMC (c.c.c)
b) Vì △ABC cân tại A (AB=AC) có AM là trung tuyến
=> AM là đường cao
=> AM ⊥ BC
tham khảo
+ Vì MAM là đường trung tuyến của ΔABC(gt)ΔABC(gt)
=> MM là trung điểm của BC.BC.
=> BM=CM=12BCBM=CM=12BC (tính chất trung điểm).
=> BM=CM=12.16=162=8(cm).BM=CM=12.16=162=8(cm).
+ Xét ΔABCΔABC có:
AB=AC=17cm(gt)AB=AC=17cm(gt)
=> ΔABCΔABC cân tại A.A.
Có AMAM là đường trung tuyến (gt).
=> AMAM đồng thời là đường cao của ΔABC.ΔABC.
=> AM⊥BC.AM⊥BC.
+ Xét ΔABMΔABM vuông tại M(cmt)M(cmt) có:
AM2+BM2=AB2AM2+BM2=AB2 (định lí Py - ta - go).
=> AM2+82=172AM2+82=172
=> AM2=172−82AM2=172−82
=> AM2=289−64AM2=289−64
=> AM2=225AM2=225
=> AM=15(cm)AM=15(cm) (vì AM>0AM>0).
+ Vì G là trọng tâm của ΔABC(gt).ΔABC(gt).
=> AG=23AMAG=23AM (tính chất trọng tâm của tam giác).
=> AG=23.15AG=23.15
=> AG=303AG=303
=> AG=10(cm).AG=10(cm).
Vậy AM=15(cm);AG=10(cm).
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
Xét \(\Delta AMB\) và \(\Delta AMC\).có:
AB = AC ( do tam giác ABC cân tại A )
MB = MC ( do M là trung điểm BC )
AM là cạnh chung
=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)
Lời giải:
a)
Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)
Xét tam giác $AMB$ và $AMC$ có:
\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)
b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)
Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)
Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)
\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)
Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)
Fan vuơng túân khải à 😒😁