K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

đề bài đâu mà chứng minh

28 tháng 4 2018

đúng đúng

21 tháng 7 2016

có n2+4n+3=(n+1)(n+3) mà n lẻ suy ra n2+4n+3 là tích 2 số chẵn liên tiếp

mà hai số chẵn liên tiếp thì sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 4=>n2+4n+3chia hết cho 8

3 tháng 9 2019

\(n^2+4n+3=n^2+2.n.2+2^2-1\)

\(=\left(n+2\right)^2-1\)

\(=\left(n+2-1\right).\left(n+2+1\right)\)

\(=\left(n-1\right).\left(n+3\right)⋮8\)

3 tháng 9 2019

Ta có n2+4n+3=(n+1)(n+3)

Vì n là số lẻ nên (n+1)và (n+3) là hai số tự nhiên chẵn liên tiếp

Do đó một trong hai số có một số chia hết cho 4 khi đó số còn lại chia hết cho 2

Vậy tích (n+1)(n+3) chia hết cho 8 và ta có điều phải chứng minh

19 tháng 6 2016

  bài toán dễ thôi nhưng em nên hiểu lấy bản chất dạng bài để làm các bài tương tự thế này: 
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

19 tháng 6 2016

bài toán dễ thôi nhưng em nên hiểu lấy bản chất dạng bài để làm các bài tương tự thế này: 
nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

14 tháng 2 2016

bai toan nay kho quá

15 tháng 1 2016

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+3\right)\left(n+1\right)\)

vì n là số lẻ \(\Rightarrow\left(n+1\right)\left(n+3\right)\) là 2 số chẵn liên tiếp

mà tích cua 2 số chẵn liên tiếp luôn chia hết cho 8 \(\Rightarrow\)\(n^2+4n+3\) chia hết cho \(8\)

15 tháng 1 2016

ok vĩ đại thiệt giải hay

6 tháng 9 2016

Với mọi n là số tự nhiên lẻ, ta có thể biểu diễn n = 2k+1 với k là số tự nhiên

Ta có : \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=\left(2k+2\right)\left(2k+4\right)=2.\left(k+1\right).2\left(k+2\right)=4\left(k+1\right)\left(k+2\right)\)

mà (k+1)(k+2) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2

Suy ra \(n^2+4n+3\) chia hết cho 2x4 = 8 với mọi n lẻ

6 tháng 9 2016

Ta có: 

n2 + 4n + 3

= n2 + n + 3n + 3

= n.(n + 1) + 3.(n + 1)

= (n + 1).(n + 3)

Do n lẻ => n = 2.k + 1 (k thuộc N)

=> (n + 1).(n + 3) = (2.k + 1 + 1).(2.k + 1 + 3)

= (2.k + 2).(2.k + 4)

= 2.(k + 1).2.(k + 2)

= 4.(k + 1).(k + 2)

Vì (k + 1).(k + 2) là tích 2 số tự nhiên liên tiếp => (k + 1).(k + 2) chia hết cho 2

-=> 4.(k + 1).(k + 2) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 (đpcm)

9 tháng 11 2015

a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3) 
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z) 
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4) 
= 2(k+1)2(k+2)= 4(k+1)(k+2) 
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2. 
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2

=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)

6 tháng 8 2016

a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3

=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8

vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ

nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8

nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do