Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4n+3\right)^2-25\)
\(=\left(4n+3\right)^2-5^2\)
\(=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)\)
a) Vì n lẻ nên n có dạng 2k + 1
\(=>A=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8=4k\left(k+3k\right)+8\)
Vì k lẻ nên k +3k lẻ \(=>k+3k⋮2=>4k\left(k+3k\right)⋮8=>4k\left(k+3k\right)+8⋮8\)
b)\(A=n^3+3n^2-n-3\)
\(=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ nên n- 1 và n + 1 là 2 số chẵn liên tiếp , trong đó có 1 số chia hết cho 4 số còn lại chia hết cho 2
\(=>\left(n-1\right)\left(n+1\right)⋮8\)
Lại có \(n+3⋮2\)(vì n lẻ) nên \(A=n^3+3n^2-n-3⋮16\)(1)
Vì n là số nguyên nên n có dạng 3k , 3k+1 , 3k-1
Thế vào A bạn chứng minh đc số đó chia hết cho 3 mà theo (1) nó chia hết cho 16 nên A chia hết cho 48
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
a) Gọi 3 số nguyên liên tiếp là \(x -1 ; x ; x + 1 .\)
Ta có : (x - 1)3 + x3 + (x + 1)3
= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)
= 3x3 - 3x(x - 1 - x - 1)
= 3x3 + 6x
= 3x3 - 3x + 9x
\(= 3(x - 1)x(x + 1) +9x\)
Vì \((x - 1)x(x + 1) \) chia hết cho 3 nên \(3(x - 1)x(x + 1)\) chia hết cho 9
Vì 9 chia hết cho 9 nên 9x chia hết cho 9
\(\Rightarrow\) \(3(x - 1)x(x + 1) + 9x\) chia hết cho 9
\(\RightarrowĐPCM\)
a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)
\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8
b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)
Vì B chứa thừa số 4 nên B chia hết cho 4
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp mà trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8
=>(n-1)(n+1) chia hết cho 8
=>\(A=\left(n+3\right)\left(n-1\right)\left(n+1\right)⋮8\)
=>đpcm
ta có : M = 34n+4-43n+3 = 34.(n+1) - 43.(n+1)= 81n+1 -64n+1= (81 -64)n+1=17n+1 ⋮ 17 với mọi n
vậy đpcm
có n2+4n+3=(n+1)(n+3) mà n lẻ suy ra n2+4n+3 là tích 2 số chẵn liên tiếp
mà hai số chẵn liên tiếp thì sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 4=>n2+4n+3chia hết cho 8