CHO TAM GIÁC ABC CÂN TẠI A.KẺ TRUNG TUYẾN BM VÀ CN CỦA TAM GIÁC ABC
a)CHỨNG MINH TAM GIÁC BMC=CNB
b)SO SÁNH GÓC ANM VÀ ABC TỪ ĐÓ SUY RA NM SONG SONG BC
c)BM CẮT NC TẠI G.CHỨNG MINH AG VUÔNG GÓC MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình các bạn tự vẽ nhé !
a)VÌ \(\Delta ABC\)cân tại \(A\)có \(BM;CN\)là đường trung tuyến
\(\Rightarrow AN=BN=AM=CM=\frac{1}{2}AB=\frac{1}{2}AC\)
\(\Rightarrow\Delta ANM\)cân ( vì AN=AM )
Vì \(\Delta ANM;\Delta ABC\)cùng cân mà có \(\widehat{A}\)chung nên \(\widehat{ANM}=\widehat{AMN}=\widehat{ABC}=\widehat{ACB}\)(đpcm)
Vì \(\widehat{AMN};\widehat{ACB}\)là hai góc đồng vị mà \(\widehat{AMN}=\widehat{ACB}\)(chứng minh trên) nên MN song song với BC (đpcm)
b) Vì G là giao điểm của BM và CN mà BM và CN là 2 đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow AG\)là đường trung tuyến của \(\Delta ABC\)từ đỉnh A xuống cạnh BC
VÌ trong tam giác cân , đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy
nên \(AG⊥BC\)
Theo (a) \(BC\)song song với \(MN\)mà \(AG⊥BC\)nên \(AG⊥MN\)(đpcm)
vì tgiac ABC cân tại A
có BM và CN là trung tuyến=> AM=MC=AN=NB
a, xét tgiac BMC và tgiac CNB có:
BC là cạnh chung
góc B= góc C(gt)
BM=CN(cmt)
vậy tgiac BMC=Tgiac CNB(c.g.c)
b. xét tgiac AMN có AM=AN(cmt)
=> tgiac AMN cân tại đỉnh A
ta lại có tgiac ABC cân tại A
Vậy góc ANM= góc ABC= (180-góc A):2
mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC
c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC
mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC
mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)
a) Xét \(\Delta BMC\) và \(\Delta CNB\) có:
BN = CM (gt)
\(\widehat{ABC=\widehat{ACB}}\)(vì \(\Delta ABC\) cân)
BC: cạnh chung
Vậy: \(\Delta BMC\) = \(\Delta CNB\) (c-g-c)
b) Ta có: \(\widehat{ANM=\widehat{ABC}}\) (hai góc đồng vị)
Suy ra: NM // BC.
c) Ta có: AN = AB - BN
AM = AC - CM
Mà AB = AC (gt)
BN = CM (\(\Delta BMC\) = \(\Delta CNB\))
Suy ra: AN = AM
Do đó: A nằm trên đường trung trực của đoạn thẳng MN
Vậy: AG \(\perp\) MN (đpcm).
a, Xét \(\Delta ABM\) vuông tại \(M\) và \(\Delta ACN\) vuông tại \(N\) có:
\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABM=\Delta ACN\left(ch-gn\right)\)
\(\Rightarrow AM=AN\left(2c.t.ứ\right)\)
\(\Rightarrow\Delta ANM\) cân tại \(A\left(đpcm\right)\left(1\right)\)
b, Từ \(\left(1\right)\Rightarrow\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Ta có: \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\widehat{ANM}=\widehat{ABC}\)
Mà 2 góc đang ở vị trí đồng vị nên:
\(\Rightarrow MN//BC\left(đpcm\right)\)
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
Do đo: ΔNBC=ΔMCB
b: Ta có: ΔAMN cân tại A
nên góc ANM=(180-góc A)/2(1)
Ta có: ΔABC cân tại A
nên góc ABC=(180-góc A)/2(2)
Từ (1) và (2) suy ra góc ANM=góc ABC
=>MN//BC
c: Xét ΔGBC có góc GBC=góc GCB
nên ΔGBC cân tại G
=>GB=GC
mà AB=AC
nên AG là đường trung trực của BC
=>AG vuông góc với BC
=>AG vuông góc với MN