K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

\(A=2xy+yz+xz\)

\(=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)

\(=-2x^2-2xy+4x-2y^2+4y\)

\(=\left[-\left(x^2+2xy+y^2\right)+\dfrac{8}{3}\left(x+y\right)-\dfrac{16}{9}\right]-\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\left(y-\dfrac{4}{3}y+\dfrac{4}{9}\right)+\dfrac{8}{3}\)\(=-\left(x+y-\dfrac{4}{3}\right)^2-\left(x-\dfrac{2}{3}\right)^2-\left(y-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\le\dfrac{8}{3}\)

Vậy \(A_{max}=\dfrac{8}{3}\) tại \(\left\{{}\begin{matrix}x=y=\dfrac{2}{3}\\z=\dfrac{4}{3}\end{matrix}\right.\)

27 tháng 4 2018

z = 4-2(x+y)

=> A= 2xy + y[4-2(x+y)] + x[4-2(x+y)]

=\(2xy+4y-2xy-2y^2+4x-2x^2-2xy\)

= \(-\left(y^2-4y+4\right)-\left(x^2-4x+4\right)-\left(y^2+2xy+x^2\right)+8\)

=\(8-\left[\left(y-2\right)^2+\left(x-2\right)^2-\left(y-x\right)^2\right]\le8\forall x,y\)

vậy GTLN của A là 8 khi x=y=2

17 tháng 4 2019

\(2x+2y+z=4\Rightarrow z=4-2x-2y\)

Ta có: \(A=2xy+yz+xz\)

               \(=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)

               \(=2xy+4y-2xy-2y^2+4x-2x^2-2xy\)

               \(=4y-2xy-2y^2+4x-2x^2\)

  \(\Rightarrow2A=8y-4xy-4y^2+8x-4x^2\)

               \(=-4x^2-4x\left(y-2\right)-4y^2+8y\)

               \(=-4x^2-2.x.2\left(y-2\right)-\left(y-2\right)^2+\left(y-2\right)^2-4y^2+8y\)

               \(=-\left[4x^2+2.x.2\left(y-2\right)+\left(y-2\right)^2\right]+\left(y-2\right)^2-4y^2+8y\)

                 \(=-\left(2x+y-2\right)^2+y^2-4y+4-4x^2+8y\)

                   \(=-\left(2x+y-2\right)^2-3y^2+4y+4\)        

                     \(=-\left(2x+y-2\right)^2-3\left(y^2-2.\frac{2}{3}y+\frac{4}{9}-\frac{4}{9}-\frac{4}{3}\right)\)       

                      \(=-\left(2x+y-2\right)^2-3\left(y-\frac{2}{3}\right)^2+\frac{16}{3}\)

                        \(=\frac{16}{3}-\left[\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2\right]\)

Vì \(\left(2x+y-2\right)^2\ge0;\left(y-\frac{2}{3}\right)^2\ge0\) Nên \(\frac{16}{3}-\left[\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2\right]\le\frac{16}{3}\)

\(\Rightarrow A\le\frac{16}{3}:2=\frac{8}{3}\)

Dấu "=" xảy ra <=>\(\hept{\begin{cases}y-\frac{2}{3}=0\\2x+y-2=0\\z=4-2x-2y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-y+2}{2}\\y=\frac{2}{3}\\z=4-2x-2y\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}}\)

Vậy AMax = 8/3 khi và chỉ khi x = y = 2/3 và z = 4/3

      

NV
31 tháng 12 2021

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)

Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)

\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)

31 tháng 12 2021

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)

\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)

Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx

=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)

Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)

= 4 

Dấu "=" xảy ra <=> x = 2/3 

30 tháng 12 2021

\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh làm theo cách bình thường giúp em với nhá! 

2x + 2y + z = 4(1)
A = 2xy + yz + xz(2)
(1) z=2c<=>x+y=2-c($)
(2)<=>2xy+2yc+2cx=A
A=2B<=>xy +(x+y).c=B
xy=B-c(2-c)
($:%)=> ton tai nghiem x,y
(c-2)^2≥4[B+c(c-2)]
c^2-4c+4≥4B+4c^2-8c
-3c^2+4c≥4B-4
-3(c^2-2.2/3c+4/9)≥4B-4-4/3
-3(c-2/3)^2≥4B-16/3
=> B≤4/3
A≤8/3
dang thuc khi c=2/3; z=1/3
x=y=2/3

9 tháng 5 2019

A=2xy+yz+xzA=2xy+yz+xz

=2xy+y(4−2x−2y)+x(4−2x−2y)=2xy+y(4−2x−2y)+x(4−2x−2y)

=−2x2−2xy+4x−2y2+4y=−2x2−2xy+4x−2y2+4y

=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83

Vậy Amax=83Amax=83 tại 

NV
12 tháng 4 2021

\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)

\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)

\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)

\(P\le2\left(x+y+z\right)=2\)

\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)