Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z là ba số thực bất kì thỏa mãn 2x + 2y + z = 4 .
Tìm GTLN của A = 2xy + yz + xz
\(A=2xy+yz+xz\)
\(=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)
\(=-2x^2-2xy+4x-2y^2+4y\)
\(=\left[-\left(x^2+2xy+y^2\right)+\dfrac{8}{3}\left(x+y\right)-\dfrac{16}{9}\right]-\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\left(y-\dfrac{4}{3}y+\dfrac{4}{9}\right)+\dfrac{8}{3}\)\(=-\left(x+y-\dfrac{4}{3}\right)^2-\left(x-\dfrac{2}{3}\right)^2-\left(y-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\le\dfrac{8}{3}\)
Vậy \(A_{max}=\dfrac{8}{3}\) tại \(\left\{{}\begin{matrix}x=y=\dfrac{2}{3}\\z=\dfrac{4}{3}\end{matrix}\right.\)
z = 4-2(x+y)
=> A= 2xy + y[4-2(x+y)] + x[4-2(x+y)]
=\(2xy+4y-2xy-2y^2+4x-2x^2-2xy\)
= \(-\left(y^2-4y+4\right)-\left(x^2-4x+4\right)-\left(y^2+2xy+x^2\right)+8\)
=\(8-\left[\left(y-2\right)^2+\left(x-2\right)^2-\left(y-x\right)^2\right]\le8\forall x,y\)
vậy GTLN của A là 8 khi x=y=2
\(A=2xy+yz+xz\)
\(=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)
\(=-2x^2-2xy+4x-2y^2+4y\)
\(=\left[-\left(x^2+2xy+y^2\right)+\dfrac{8}{3}\left(x+y\right)-\dfrac{16}{9}\right]-\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\left(y-\dfrac{4}{3}y+\dfrac{4}{9}\right)+\dfrac{8}{3}\)\(=-\left(x+y-\dfrac{4}{3}\right)^2-\left(x-\dfrac{2}{3}\right)^2-\left(y-\dfrac{2}{3}\right)^2+\dfrac{8}{3}\le\dfrac{8}{3}\)
Vậy \(A_{max}=\dfrac{8}{3}\) tại \(\left\{{}\begin{matrix}x=y=\dfrac{2}{3}\\z=\dfrac{4}{3}\end{matrix}\right.\)
z = 4-2(x+y)
=> A= 2xy + y[4-2(x+y)] + x[4-2(x+y)]
=\(2xy+4y-2xy-2y^2+4x-2x^2-2xy\)
= \(-\left(y^2-4y+4\right)-\left(x^2-4x+4\right)-\left(y^2+2xy+x^2\right)+8\)
=\(8-\left[\left(y-2\right)^2+\left(x-2\right)^2-\left(y-x\right)^2\right]\le8\forall x,y\)
vậy GTLN của A là 8 khi x=y=2