Chứng minh bất đẳng thức
a) A= (a+b)(1/a + 1/b) >=4
b) B= a+b/c + b+c/a + c+a/b >=6 (a,b,c >0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(a+1\right)^2\ge4a\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)
b, Áp dụng bđt Cô-si
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(=8\sqrt{abc}=8\)(ĐPCM)
Dấu "=" khi a = b = c =1
a, \(\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1>4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)
b, Áp dụng bất đẳng thức trên ta có :
( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)
mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)
Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.
Khi đó : a + 1 > \(2\sqrt{a}\)
Tương tự ta có :
b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)
=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)
a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\forall a\)
\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)
Áp dụng BĐT cosi:
\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
a) Có: \(\left(a-1\right)^2\ge0,\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)
=>đpcm
b) Áp dụng bđt trên ta có:
\(\left(a+1\right)^2\ge4a\) (1)
\(\left(b+1\right)^2\ge4b\) (2)
\(\left(c+1\right)^2\ge4c\) (3)
Nhân vế vs vế (1) ; (2);(3) ta đc:
\(\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a\cdot4b\cdot4c=64abc=64\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)
a)
(a+1)2>=4a
<=> a2 +2a+1>=4a
<=>a2 -2a+1>=0
<=>(a-1)2>=0 với mọi a
Mà các phép biến đổi trên tương đương
=> đpcm
Áp dụng BĐT ở câu a)
\(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge\sqrt{4a}\)
Mà a dương nên \(BĐT\Leftrightarrow a+1\ge2\sqrt{a}\)
Chứng minh tương tự: \(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
a) (a-1)^2 >= 0 <=> a^2 - 2a + 1 >= 0 <=> a^2 + 2a + 1 > 4a <=> (a+1)^2 >= 4a
b) Áp dụng bđt trên: \(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)
mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\) Do a > 0 nên a+1>0. Vậy |a+1| = a + 1
Khi đó: a+1 >= 2 căn a
Tương tự ta có b+1 >= 2 căn b và c+1 >= 2 căn c
=> (a+b)(b+a)(c+1) >= 8 căn abc = 8
9. a) Xét hiệu : (a + 1)\(^2\) – 4a = a\(^2\) + 2a + 1 – 4a = a\(^2\)– 2a + 1 = (a – 1)\(^2\) ≥ 0.
b)Theo BĐT Côsi:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)
Tương tự ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm.
Đẳng thức xảy ra khi a = b = c
a)\(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
Ta chứng minh bđt:\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)(1)
\(\Leftrightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Áp dụng\(\Rightarrow A\ge1+2+1=4\left(\text{đ}pcm\right)\)
b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(B=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\)
\(B=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
Áp dụng bđt (1)\(\Rightarrow B\ge2+2+2=6\left(\text{đ}pcm\right)\)