K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

Ta có:

\(9x^2+y^2+z^2-36x-16y+10z=-125\)

\(\Leftrightarrow\)  \(9x^2+y^2+z^2-36x-16y+10z+125=0\)

\(\Leftrightarrow\)  \(9x^2-36x+36+y^2-16y+64+z^2+10z+25=0\)

\(\Leftrightarrow\)  \(9\left(x-2\right)^2+\left(y-8\right)^2+\left(z+5\right)^2=0\)

Mà   \(\left(x-2\right)^2;\left(y-8\right)^2;\left(z+5\right)^2\ge0\)  với mọi   \(x;y;z\)

nên   \(\left(x-2\right)^2=0;\left(y-8\right)^2=0;\left(z+5\right)^2=0\)

\(\Leftrightarrow\)   \(x-2=0;y-8=0;z+5=0\)

\(\Leftrightarrow\)   \(x=2;y=8;z=-5\)

Vậy,   \(xy+yz+xz=-34\)

18 tháng 12 2014

9x2 + y2 + z2 - 36x - 16y + 10z = - 125

\(\Leftrightarrow\)9x2 - 36x + 36 + y2 - 16y + 64 + z2 + 10z + 25 = 0

\(\Leftrightarrow\) ( 3x - 6 )2 + ( y - 8 )2 + ( z + 5 )2 = 0

Từ đó suy ra x, y, z

 

NV
23 tháng 12 2020

\(xy+yz+zx\le\dfrac{1}{3}\left(x+y+z\right)^2=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2}{3}\)

23 tháng 12 2020

làm cách khác được ko anh

20 tháng 3 2017

Đáp án là -13 bn ơi

19 tháng 3 2017

Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có: 

+) x² + y² ≥ 2xy 

x² + 1 ≥ 2x 

+) y² + z² ≥ 2yz 

y² + 1 ≥ 2y 

+) z² + x² ≥ 2xz 

z² + 1 ≥ 2z 

=> 2 ( x+ y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1

9 tháng 1 2018

cô si cho gt