K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔADB vuông tại D

=>AB là cạnh huyền

=>AB là cạnh lớn nhất trongΔADB

=>AB>BD

ΔAEC vuông tại E

=>AC là cạnh huyền

=>AC là cạnh lớn nhất trong ΔAEC

=>AC>CE

=>BD+CE<AB+AC

=>Chọn A

10 tháng 12 2021

Điểm F ở đâu vậy bạn?

22 tháng 3 2023

cái này là ace nhá

ko phải là afe

11 tháng 5 2020

Dễ mà : 

Gợi ý ta sẽ áp dụng hệ quả là : Trong một tam giác vuông thì Cạnh huyền luôn lớn hơn Cạnh góc vuông

17 tháng 5 2020

                                       Giải

B A E F D C

a , Xét \(\Delta BAD\)và \(\Delta BED\)có :

     AB = BE ( gt )

     BD chung 

     \(\widehat{ABD}=\widehat{DBE}\)( BD là đường phân giác \(\widehat{B}\))

\(\Rightarrow\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\text{​​}\Delta ABD=\Delta BDE\left(c.g.c\right)\)

b , Có \(\Delta ABD=\Delta BDE\)

\(\Rightarrow\widehat{E}=\widehat{A}=90^0\)( 2 góc tương ứng )

Ta có : \(\hept{\begin{cases}\widehat{AFD}+\widehat{ADF}=90^0\\\widehat{ECD}+\widehat{EDC}=90^0\\\widehat{ADF}=\widehat{EDC}\left(đđ\right)\end{cases}}\)

\(\Rightarrow\widehat{AFD}=\widehat{DCE}\)

Xét \(\Delta ADF\)vuông tại A và \(\Delta EDC\)vuông tại E có :

    \(\hept{\begin{cases}\text{ AF = EC ( gt )}\\\widehat{AFD\: }=\widehat{DCE}\left(cmt\right)\end{cases}\Rightarrow\Delta ADF=\Delta EDC\left(cgv.gn\right)}\)

\(\Rightarrow DF=DC\)( 2 cạnh tương ứng )

c , Có \(D\in AC\)( BD cắt AC tại D )

\(\widehat{EDC}+\widehat{ADE}=180^0\)

Mà \(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh )

\(\Rightarrow\widehat{ADF}+\widehat{ADE}=180^0\)

\(\Rightarrow\widehat{EDF}=180^0\)

\(\Rightarrow\)E , D , F cùng nằm trên 1 đường thẳng .

Xét tứ giác AEID có

\(\widehat{AEI}+\widehat{ADI}+\widehat{EAD}+\widehat{EID}=360^0\)

=>\(\widehat{EAD}+\widehat{EID}+90^0+90^0=360^0\)

=>\(\widehat{EAD}+\widehat{EID}=360^0-180^0=180^0\)

mà \(\widehat{EID}=\widehat{BIC}\)(hai góc đối đỉnh)

nên \(\widehat{EAD}+\widehat{BIC}=180^0\)

=>góc BIC bù với góc BAC