Cho tam giác ABC cân tại A có góc A=110 độ.Trên cạnh BC lấy điểm D sao cho góc CAD =70 độ. Kẻ tia Cx song song với AD cắt tia BA tại E
a)Chứng minh rằng tam giác AEC là tam giác cân
b)Trong tam giác AEC cạnh nào nhỏ nhất? Tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn thôi nhé ^^ toán hình mà chép lời giải thôi thì mất thú vị ^^
Ý a em tính góc EAC (góc kề bù) , tính góc ACE (so le trong)
Ý b dùng định lý tổng 3 góc của tam giác nhé
Còn ý c dùng định lý 1 về quan hệ giữa góc và cạnh dối diện nhé ^^ có gì k hiểu thì ib hỏi chị
Vì AD //CE
=> CAD = ACE = 50°( so le trong )
Mà CAB + CAE = 180°
=> EAC = 50°
=> EAC = ECA = 50°
=> ∆EAC cân tại E
b) Vì EAC + ECA +AEC = 180°
=> AEC = 80°
c) Vì ∆AEC cân tại E
=> AE = EC
Mà EAC = ECA =50°
=> EAC< AED
=> BC là cạnh lớn nhất
bạn viết đề lại đi
hình như thiếu
... Từ C kẻ tia Cx cắt BA tại E (sao cho)...
HÌnh bạn tự vẽ nha.
Xét \(\Delta\) ABC cân tại A có : góc A + 2 góc B = 180 độ
Mà góc A =110 độ (gt)
\(\Rightarrow\)Góc B = 35 độ
Xét \(\Delta\) ABD có : góc BAD + góc B + ADC = 180 độ
Mà góc B = 35 độ (cmt) , ADC = 105 độ
\(\Rightarrow\)BAD = 180-35-105=40 độ
Mà CE // AD (gt)
\(\Rightarrow\)Góc E bằng 40 độ ( 2 góc đồng vị )
Xét \(\Delta\)BCE có : góc E + góc B + BCE = 180 độ (đ/l)
Mà E = 40 độ (cmt) , B = 35 độ (cmt)
\(\Rightarrow\)BCE = 180-40-35=105 độ
\(\Rightarrow\)BCE>E>B (105>40>35)
\(\Rightarrow\)BE>BC>CE (Quan hệ giữa cạnh và góc đối diện )
Hay EC<BC<BE
_HT_
a: góc BAD=110-70=40 độ
=>góc AEC=40 độ
\(\widehat{CAE}=180^0-110^0=70^0\)
\(\widehat{ACE}=180^0-40^0-70^0=70^0=\widehat{CAE}\)
hay ΔAEC cântại E
b: Xét ΔEAC có góc AEC<góc CAE=góc ACE
nên AC là cạnh nhỏ nhất