a)(5x4-3x3+x2):34 b)(5xy2+9xy-x2y2):(-xy)
c)(x3y3-1/2x2y3-x3y2):1/3x2y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)
b: \(=-5y-9+xy\)
x 3 y 3 - 1 / 2 x 2 y 3 - x 3 y 2 : 1 / 3 x 2 y 2 = x 3 y 3 : 1 / 3 x 2 y 2 + - 1 / 2 x 2 y 3 : 1 / 3 x 2 y 2 + - x 3 y 2 : 1 / 3 x 2 y 2 = 3 x y - 3 / 2 - 3 x
5 x y 2 + 9 x y - x 2 y 2 : - x y = 5 x y 2 - - x y + 9 x y : - x y + - x 2 y 2 : - x y = - 5 y - 9 + x y
Lời giải:
Với $x=3, y=\frac{1}{3}$ thì $xy=3.\frac{1}{3}=1$
Khi đó:
$A=xy+(xy)^2+(xy)^4+...+(xy)^{2022}=1+1^2+1^4+...+1^{2022}$
$=\underbrace{1+1+....+1}_{1012}=1012.1=1012$
b. Đề thiếu dữ kiện về $x,y$
a) thay x=4 và y=5 vào biểu thức ta đc :129
b) tương tự....To be continued
a:\(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy+y^3\)
\(=5^2+2\cdot5\cdot4+4^3\)
\(=25+40+64=129\)
11: \(\dfrac{1}{3}x^2y^2\left(6x+\dfrac{2}{3}x^2-y\right)\)
\(=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\)
12: \(\dfrac{3}{4}x^3y^2\left(4x^2y-x+y^5\right)\)
\(=3x^5y^3-\dfrac{3}{4}x^4y^2+\dfrac{3}{4}x^3y^7\)
13: \(-5x^2y^4\left(3x^2y^3-2x^3y^2-xy\right)\)
\(=-15x^4y^7+10x^5y^6+5x^3y^5\)
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)
Bài 3:
a: Ta có: C=A+B
\(=x^2-2y+xy+1+x^2+y-x^2y^2-1\)
\(=2x^2-y+xy-x^2y^2\)
b: Ta có: C+A=B
\(\Leftrightarrow C=B-A\)
\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)
\(=-x^2y^2+3y-xy-2\)